Hai đường thẳng vuông góc

Câu 41 Trắc nghiệm

Cho tứ diện $ABCD$ có trọng tâm $G$. Chọn khẳng định đúng?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

$\begin{array}{l}A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2}\\ = {\left( {\overrightarrow {AG}  + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {AG}  + \overrightarrow {GC} } \right)^2} + {\left( {\overrightarrow {AG}  + \overrightarrow {GD} } \right)^2} + {\left( {\overrightarrow {BG}  + \overrightarrow {GC} } \right)^2} + {\left( {\overrightarrow {BG}  + \overrightarrow {GD} } \right)^2} + {\left( {\overrightarrow {CG}  + \overrightarrow {GD} } \right)^2}\end{array}$

$= 3A{G^2} + 3B{G^2} + 3C{G^2} + 3D{G^2} + 2 {\overrightarrow {AG} .\overrightarrow {GB}  + 2\overrightarrow {AG} .\overrightarrow {GC}  + 2\overrightarrow {AG} .\overrightarrow {GD}  + 2\overrightarrow {BG} .\overrightarrow {GD}  + 2\overrightarrow {BG} .\overrightarrow {GD}  + 2\overrightarrow {CG} .\overrightarrow {GD} } \left( 1 \right)$

Lại có:

 \(\begin{array}{l}\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {G{\rm{D}}}  = \overrightarrow 0  \Leftrightarrow {\left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {G{\rm{D}}} } \right)^2} = 0\\ \Leftrightarrow G{A^2} + G{B^2} + G{C^2} + G{{\rm{D}}^2} = 2 {\overrightarrow {AG} .\overrightarrow {GB}  + 2\overrightarrow {AG} .\overrightarrow {GC}  + 2\overrightarrow {AG} .\overrightarrow {GD}  + 2\overrightarrow {BG} .\overrightarrow {GD}  + 2\overrightarrow {BG} .\overrightarrow {GD}  + 2\overrightarrow {CG} .\overrightarrow {GD} } \left( 2 \right)\end{array}\)

Từ (1) và (2) suy ra $A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2} = 4\left( {G{A^2} + G{B^2} + G{C^2} + G{D^2}} \right)$

Câu 42 Trắc nghiệm

Cho hình chóp $S.ABCD$ có đáy là hình vuông $ABCD$ cạnh bằng $a$ và các cạnh bên đều bằng $a$. Gọi $M$ và $N$ lần lượt là trung điểm của $AD$ và $SD$. Số đo của góc $\left( {MN,SC} \right)$ bằng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: $AC = a\sqrt 2 $

$ \Rightarrow A{C^2} = 2{a^2} = S{A^2} + S{C^2}$

$ \Rightarrow \Delta SAC$ vuông tại $S$.

Khi đó: $\overrightarrow {NM} .\overrightarrow {SC}  = \dfrac{1}{2}\overrightarrow {SA} .\overrightarrow {SC}  = 0$ $ \Leftrightarrow \left( {\overrightarrow {NM} ,\overrightarrow {SC} } \right) = 90^\circ $

$ \Rightarrow \left( {MN,SC} \right) = 90^\circ $

Câu 43 Trắc nghiệm

Cho hình lập phương \(ABCD.A'B'C'D'\). Chọn khẳng định sai?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: $\overrightarrow {AA'} .\overrightarrow {B'D'}  = \overrightarrow {BB'} .\overrightarrow {BD}  = \overrightarrow {BB'} .\left( {\overrightarrow {BA}  + \overrightarrow {BC} } \right)$ $ = \overrightarrow {BB'} .\overrightarrow {BA}  + \overrightarrow {BB'} .\overrightarrow {BC}  = 0$

(vì $\left( {\overrightarrow {BB'} ,\overrightarrow {BA} } \right) = {90^0}$$\left( {\overrightarrow {BB'} ,\overrightarrow {BC} } \right) = {90^0}$)

Do đó: $\left( {\overrightarrow {AA'} ,\overrightarrow {B'D'} } \right) = {90^0} \Rightarrow \widehat {\left( {AA',B'D'} \right)} = {90^0}$

Câu 44 Trắc nghiệm

Cho \(\left| {\overrightarrow a } \right| = 3,\left| {\overrightarrow b } \right| = 5\), góc giữa \(\overrightarrow a \) và \(\overrightarrow b \) bằng $120^\circ $. Chọn khẳng định sai trong các khẳng định sau?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Đáp án A: \({\left| {\vec a + \vec b} \right|^2} = {\left( {\overrightarrow a  + \overrightarrow b } \right)^2} = {\vec a^2} + {\vec b^2} + 2\vec a.\vec b \) \( = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\) \( = {3^2} + {5^2} + 2.3.5.\left( { - \dfrac{1}{2}} \right) = 19\)

Do đó \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \sqrt {19} \)

Đáp án B: \({\left| {\vec a - \vec b} \right|^2} = {\left( {\overrightarrow a  - \overrightarrow b } \right)^2}\)\( = {\overrightarrow a ^2} - 2\overrightarrow a \overrightarrow b  + {\overrightarrow b ^2}\) \( = {\left| {\overrightarrow a } \right|^2} - 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + {\left| {\overrightarrow b } \right|^2}\) \( = {3^2} - 2.3.5.\left( { - \dfrac{1}{2}} \right) + {5^2} = 49\) \( \Rightarrow \left| {\overrightarrow a  - \overrightarrow b } \right| = 7\) nên B đúng.

Đáp án C: \({\left| {\overrightarrow a  - 2\overrightarrow b } \right|^2} = {\left( {\overrightarrow a  - 2\overrightarrow b } \right)^2}\) \( = {\overrightarrow a ^2} - 4\overrightarrow a \overrightarrow b  + 4{\overrightarrow b ^2}\) \( = {\left| {\overrightarrow a } \right|^2} - 4\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + 4{\left| {\overrightarrow b } \right|^2}\) \( = {3^2} - 4.3.5.\left( { - \dfrac{1}{2}} \right) + {4.5^2} = 139\) \( \Rightarrow \left| {\overrightarrow a  - 2\overrightarrow b } \right| = \sqrt {139} \) nên C đúng.

Đáp án D: \({\left| {\overrightarrow a  + 2\overrightarrow b } \right|^2} = {\left( {\overrightarrow a  + 2\overrightarrow b } \right)^2}\) \( = {\overrightarrow a ^2} + 4\overrightarrow a \overrightarrow b  + 4{\overrightarrow b ^2}\) \( = {\left| {\overrightarrow a } \right|^2} + 4\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + 4{\left| {\overrightarrow b } \right|^2}\) \( = {3^2} + 4.3.5.\left( { - \dfrac{1}{2}} \right) + {4.5^2} = 79\) \( \Rightarrow \left| {\overrightarrow a  + 2\overrightarrow b } \right| = \sqrt {79} \) nên D sai.

Câu 45 Trắc nghiệm

Cho hình lập phương $ABCD.EFGH$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AF} \) và \(\overrightarrow {EG} \)?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có:

\(\begin{array}{l}\overrightarrow {AF}  = \overrightarrow {AB}  + \overrightarrow {AE} \\\overrightarrow {EG}  = \overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} \\ \Rightarrow \overrightarrow {AF} .\overrightarrow {EG}  = \left( {\overrightarrow {AB}  + \overrightarrow {AE} } \right).\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) = A{B^2} + \overrightarrow {AE} .\overrightarrow {AB}  + \overrightarrow {AB} .\overrightarrow {AD}  + \overrightarrow {AE} .\overrightarrow {AD}  = A{B^2}\\ \Rightarrow \cos \left( {\overrightarrow {AF} ,\overrightarrow {EG} } \right) = \dfrac{{\overrightarrow {AF} .\overrightarrow {EG} }}{{\left| {\overrightarrow {AF} } \right|.\left| {\overrightarrow {EG} } \right|}} = \dfrac{{{a^2}}}{{a\sqrt 2 .a\sqrt 2 }} = \dfrac{1}{2} \Rightarrow \widehat {\left( {\overrightarrow {AF} ,\overrightarrow {EG} } \right)} = {60^0}\end{array}\)

Câu 46 Trắc nghiệm

Cho hình hộp \(ABCD.A'B'C'D'\) có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau, mệnh đề nào có thể sai?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

A đúng vì:

\(\left\{ \begin{array}{l}A'C' \bot B'D'\\B'D'{\rm{ // }}BD\end{array} \right. \Rightarrow A'C' \bot BD\).

C đúng vì: \(\left\{ \begin{array}{l}A'B \bot AB'\\AB'{\rm{ // }}DC'\end{array} \right. \Rightarrow A'B \bot DC'\).

D đúng vì: \(\left\{ \begin{array}{l}BC' \bot B'C\\B'C{\rm{ // }}A'D\end{array} \right. \Rightarrow BC' \bot A'D\).

Câu 47 Trắc nghiệm

Cho tứ diện $ABCD$ có $AB$ vuông góc với $CD$. Mặt phẳng $\left( P \right)$ song song với $AB$ và $CD$ lần lượt cắt $BC,{\rm{ }}DB,{\rm{ }}AD,{\rm{ }}AC$ tại $M,{\rm{ }}N,{\rm{ }}P,{\rm{ }}Q$. Tứ giác $MNPQ$ là hình gì?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: $\left\{ \begin{array}{l}\left( {MNPQ} \right){\rm{//}}AB\\\left( {MNPQ} \right) \cap \left( {ABC} \right) = MQ\end{array} \right. $ $\Rightarrow MQ{\rm{//}}AB$

Tương tự ta có: \(MN{\rm{//}}CD,\,\,NP{\rm{//}}AB,\,\,QP{\rm{//}}C{\rm{D}}\).

Do đó tứ giác \(MNPQ\) là hình bình hành

 lại có \(MN \bot MQ\left( {do\,AB \bot CD\,} \right)\).

Vậy tứ giác \(MNPQ\) là hình chữ nhật.

Câu 48 Trắc nghiệm

Cho tứ diện \(ABCD\) có \(AB\) vuông góc với \(CD\), \(AB = CD = 6\). \(M\) là điểm thuộc cạnh \(BC\) sao cho \(MC = x.BC{\rm{ }}\left( {0 < x < 1} \right)\). Mặt phẳng\(\left( P \right)\) song song với \(AB\) và \(CD\) lần lượt cắt \(BC,DB,AD,AC\) tại \(M,N,P,Q\). Diện tích lớn nhất của tứ giác bằng bao nhiêu?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét tứ giác \(MNPQ\) có \(\left\{ \begin{array}{l}MQ{\rm{//}}NP{\rm{//}}AB\\MN{\rm{//}}PQ{\rm{//}}CD\end{array} \right.\)\( \Rightarrow MNPQ\) là hình bình hành.

Mặt khác, \(AB \bot CD \Rightarrow MQ \bot MN\). Do đó, \(MNPQ\) là hình chữ nhật.

Vì \(MQ{\rm{//}}AB\) nên \(\dfrac{{MQ}}{{AB}} = \dfrac{{CM}}{{CB}} = x \Rightarrow MQ = x.AB = 6x\).

Theo giả thiết \(MC = x.BC \Rightarrow BM = \left( {1 - x} \right)BC\).

Vì \(MN{\rm{//}}CD\) nên \(\dfrac{{MN}}{{CD}} = \dfrac{{BM}}{{BC}} = 1 - x \Rightarrow MN = \left( {1 - x} \right).CD = 6\left( {1 - x} \right)\).

Diện tích hình chữ nhật \(MNPQ\) là

\({S_{MNPQ}} = MN.MQ = 6\left( {1 - x} \right).6x = 36.x.\left( {1 - x} \right) \le 36{\left( {\dfrac{{x + 1 - x}}{2}} \right)^2} = 9\) .

Ta có \({S_{MNPQ}} = 9\) khi \(x = 1 - x \Leftrightarrow x = \dfrac{1}{2}\) .

Vậy diện tích tứ giác \(MNPQ\) lớn nhất bằng \(9\) khi \(M\) là trung điểm của \(BC\).

Câu 49 Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trung điểm H của cạnh AB. Biết tam giác SAB là tam giác đều. Số đo của góc giữa SA và CD là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Bước 1:

\(CD||AB \Rightarrow \widehat {\left( {SA,CD} \right)}\)\( = \widehat {\left( {SA,AB} \right)} = \widehat {SAB}\)

Bước 2:

Vì tam giác SAB là tam giác đều.

\( \Rightarrow \widehat {SAB} = 60^\circ \)

Vậy góc giữa SA và CD là \({60^0}\)

Câu 50 Trắc nghiệm

Cho tứ diện $A B C D$ có $A B$ vuông góc với mặt phẳng $(B C D)$. Biết tam giác $B C D$ vuông tại $C$ và các cạnh $A B=\dfrac{a \sqrt{6}}{2}, A C=a \sqrt{2}, C D=a$. Gọi $E$ là trung điểm của $A C$. Góc giữa hai đường thẳng $A B$ và $D E$ bằng

Bạn đã chọn sai | Đáp án đúng:

$60^{\circ}$

Bạn đã chọn đúng | Đáp án đúng:

$60^{\circ}$

Bạn chưa làm câu này | Đáp án đúng:

$60^{\circ}$

Bước 1: Gọi $F$ là trung điểm của $B C$. Xác định góc giữa AB và DE

Gọi $F$ là trung điểm của $B C$

Xét $\Delta A B C$ có $E ; F$ lần lượt là trung điểm của $A C ; B C$

$\Rightarrow E F$ là đường trung bình của $\Delta A B C$

$\Rightarrow E F / / A B \Rightarrow(\widehat{A B, D E})=(\widehat{E F, D E})$

Ta có $A B \perp(B C D) \Rightarrow E F \perp(B C D) \Rightarrow E F \perp F D$

(vì $F D \subset(B C D)$ )

$\Rightarrow \Delta E F D$ vuông tại $F$ do đó $(\widehat{E F, D E})=\widehat{F E D}$

Bước 2: Tính góc $FED$ và kết luận.

Lại có $\left\{\begin{array}{l}C D \perp B C \\ C D \perp A B\end{array} \Rightarrow C D \perp(A B C) \Rightarrow C D \perp A C\right.$ hay $\Delta A C D$ vuông tại $C$

Xét tam giác vuông $E C D$ có

$E D=\sqrt{E C^{2}+C D^{2}}=\sqrt{\left(\dfrac{A C}{2}\right)^{2}+C D^{2}}=\sqrt{\left(\dfrac{a \sqrt{2}}{2}\right)^{2}+a^{2}}=\dfrac{a \sqrt{6}}{2} .$

Xét $\Delta E F D$ vuông có $\cos \widehat{F E D}=\dfrac{E F}{E D}=\dfrac{A B}{2 E D}=\dfrac{1}{2} \Rightarrow \widehat{F E D}=60^{\circ}$

Vậy góc giữa hai đường thẳng $A B$ và $D E$ bằng $60^{\circ}$