Cho tứ diện $ABCD$ có trọng tâm $G$. Chọn khẳng định đúng?

$\begin{array}{l}A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2}\\ = {\left( {\overrightarrow {AG} + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {AG} + \overrightarrow {GC} } \right)^2} + {\left( {\overrightarrow {AG} + \overrightarrow {GD} } \right)^2} + {\left( {\overrightarrow {BG} + \overrightarrow {GC} } \right)^2} + {\left( {\overrightarrow {BG} + \overrightarrow {GD} } \right)^2} + {\left( {\overrightarrow {CG} + \overrightarrow {GD} } \right)^2}\end{array}$
$= 3A{G^2} + 3B{G^2} + 3C{G^2} + 3D{G^2} + 2 {\overrightarrow {AG} .\overrightarrow {GB} + 2\overrightarrow {AG} .\overrightarrow {GC} + 2\overrightarrow {AG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {CG} .\overrightarrow {GD} } \left( 1 \right)$
Lại có:
\(\begin{array}{l}\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {G{\rm{D}}} = \overrightarrow 0 \Leftrightarrow {\left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {G{\rm{D}}} } \right)^2} = 0\\ \Leftrightarrow G{A^2} + G{B^2} + G{C^2} + G{{\rm{D}}^2} = 2 {\overrightarrow {AG} .\overrightarrow {GB} + 2\overrightarrow {AG} .\overrightarrow {GC} + 2\overrightarrow {AG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {CG} .\overrightarrow {GD} } \left( 2 \right)\end{array}\)
Từ (1) và (2) suy ra $A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2} = 4\left( {G{A^2} + G{B^2} + G{C^2} + G{D^2}} \right)$
Cho hình chóp $S.ABCD$ có đáy là hình vuông $ABCD$ cạnh bằng $a$ và các cạnh bên đều bằng $a$. Gọi $M$ và $N$ lần lượt là trung điểm của $AD$ và $SD$. Số đo của góc $\left( {MN,SC} \right)$ bằng:

Ta có: $AC = a\sqrt 2 $
$ \Rightarrow A{C^2} = 2{a^2} = S{A^2} + S{C^2}$
$ \Rightarrow \Delta SAC$ vuông tại $S$.
Khi đó: $\overrightarrow {NM} .\overrightarrow {SC} = \dfrac{1}{2}\overrightarrow {SA} .\overrightarrow {SC} = 0$ $ \Leftrightarrow \left( {\overrightarrow {NM} ,\overrightarrow {SC} } \right) = 90^\circ $
$ \Rightarrow \left( {MN,SC} \right) = 90^\circ $
Cho hình lập phương \(ABCD.A'B'C'D'\). Chọn khẳng định sai?

Ta có: $\overrightarrow {AA'} .\overrightarrow {B'D'} = \overrightarrow {BB'} .\overrightarrow {BD} = \overrightarrow {BB'} .\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right)$ $ = \overrightarrow {BB'} .\overrightarrow {BA} + \overrightarrow {BB'} .\overrightarrow {BC} = 0$
(vì $\left( {\overrightarrow {BB'} ,\overrightarrow {BA} } \right) = {90^0}$ và $\left( {\overrightarrow {BB'} ,\overrightarrow {BC} } \right) = {90^0}$)
Do đó: $\left( {\overrightarrow {AA'} ,\overrightarrow {B'D'} } \right) = {90^0} \Rightarrow \widehat {\left( {AA',B'D'} \right)} = {90^0}$
Cho \(\left| {\overrightarrow a } \right| = 3,\left| {\overrightarrow b } \right| = 5\), góc giữa \(\overrightarrow a \) và \(\overrightarrow b \) bằng $120^\circ $. Chọn khẳng định sai trong các khẳng định sau?
Đáp án A: \({\left| {\vec a + \vec b} \right|^2} = {\left( {\overrightarrow a + \overrightarrow b } \right)^2} = {\vec a^2} + {\vec b^2} + 2\vec a.\vec b \) \( = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\) \( = {3^2} + {5^2} + 2.3.5.\left( { - \dfrac{1}{2}} \right) = 19\)
Do đó \(\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {19} \)
Đáp án B: \({\left| {\vec a - \vec b} \right|^2} = {\left( {\overrightarrow a - \overrightarrow b } \right)^2}\)\( = {\overrightarrow a ^2} - 2\overrightarrow a \overrightarrow b + {\overrightarrow b ^2}\) \( = {\left| {\overrightarrow a } \right|^2} - 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + {\left| {\overrightarrow b } \right|^2}\) \( = {3^2} - 2.3.5.\left( { - \dfrac{1}{2}} \right) + {5^2} = 49\) \( \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = 7\) nên B đúng.
Đáp án C: \({\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = {\left( {\overrightarrow a - 2\overrightarrow b } \right)^2}\) \( = {\overrightarrow a ^2} - 4\overrightarrow a \overrightarrow b + 4{\overrightarrow b ^2}\) \( = {\left| {\overrightarrow a } \right|^2} - 4\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + 4{\left| {\overrightarrow b } \right|^2}\) \( = {3^2} - 4.3.5.\left( { - \dfrac{1}{2}} \right) + {4.5^2} = 139\) \( \Rightarrow \left| {\overrightarrow a - 2\overrightarrow b } \right| = \sqrt {139} \) nên C đúng.
Đáp án D: \({\left| {\overrightarrow a + 2\overrightarrow b } \right|^2} = {\left( {\overrightarrow a + 2\overrightarrow b } \right)^2}\) \( = {\overrightarrow a ^2} + 4\overrightarrow a \overrightarrow b + 4{\overrightarrow b ^2}\) \( = {\left| {\overrightarrow a } \right|^2} + 4\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + 4{\left| {\overrightarrow b } \right|^2}\) \( = {3^2} + 4.3.5.\left( { - \dfrac{1}{2}} \right) + {4.5^2} = 79\) \( \Rightarrow \left| {\overrightarrow a + 2\overrightarrow b } \right| = \sqrt {79} \) nên D sai.
Cho hình lập phương $ABCD.EFGH$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AF} \) và \(\overrightarrow {EG} \)?

Ta có:
\(\begin{array}{l}\overrightarrow {AF} = \overrightarrow {AB} + \overrightarrow {AE} \\\overrightarrow {EG} = \overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \\ \Rightarrow \overrightarrow {AF} .\overrightarrow {EG} = \left( {\overrightarrow {AB} + \overrightarrow {AE} } \right).\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) = A{B^2} + \overrightarrow {AE} .\overrightarrow {AB} + \overrightarrow {AB} .\overrightarrow {AD} + \overrightarrow {AE} .\overrightarrow {AD} = A{B^2}\\ \Rightarrow \cos \left( {\overrightarrow {AF} ,\overrightarrow {EG} } \right) = \dfrac{{\overrightarrow {AF} .\overrightarrow {EG} }}{{\left| {\overrightarrow {AF} } \right|.\left| {\overrightarrow {EG} } \right|}} = \dfrac{{{a^2}}}{{a\sqrt 2 .a\sqrt 2 }} = \dfrac{1}{2} \Rightarrow \widehat {\left( {\overrightarrow {AF} ,\overrightarrow {EG} } \right)} = {60^0}\end{array}\)
Cho hình hộp \(ABCD.A'B'C'D'\) có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau, mệnh đề nào có thể sai?

A đúng vì:
\(\left\{ \begin{array}{l}A'C' \bot B'D'\\B'D'{\rm{ // }}BD\end{array} \right. \Rightarrow A'C' \bot BD\).
C đúng vì: \(\left\{ \begin{array}{l}A'B \bot AB'\\AB'{\rm{ // }}DC'\end{array} \right. \Rightarrow A'B \bot DC'\).
D đúng vì: \(\left\{ \begin{array}{l}BC' \bot B'C\\B'C{\rm{ // }}A'D\end{array} \right. \Rightarrow BC' \bot A'D\).
Cho tứ diện $ABCD$ có $AB$ vuông góc với $CD$. Mặt phẳng $\left( P \right)$ song song với $AB$ và $CD$ lần lượt cắt $BC,{\rm{ }}DB,{\rm{ }}AD,{\rm{ }}AC$ tại $M,{\rm{ }}N,{\rm{ }}P,{\rm{ }}Q$. Tứ giác $MNPQ$ là hình gì?

Ta có: $\left\{ \begin{array}{l}\left( {MNPQ} \right){\rm{//}}AB\\\left( {MNPQ} \right) \cap \left( {ABC} \right) = MQ\end{array} \right. $ $\Rightarrow MQ{\rm{//}}AB$
Tương tự ta có: \(MN{\rm{//}}CD,\,\,NP{\rm{//}}AB,\,\,QP{\rm{//}}C{\rm{D}}\).
Do đó tứ giác \(MNPQ\) là hình bình hành
lại có \(MN \bot MQ\left( {do\,AB \bot CD\,} \right)\).
Vậy tứ giác \(MNPQ\) là hình chữ nhật.
Cho tứ diện \(ABCD\) có \(AB\) vuông góc với \(CD\), \(AB = CD = 6\). \(M\) là điểm thuộc cạnh \(BC\) sao cho \(MC = x.BC{\rm{ }}\left( {0 < x < 1} \right)\). Mặt phẳng\(\left( P \right)\) song song với \(AB\) và \(CD\) lần lượt cắt \(BC,DB,AD,AC\) tại \(M,N,P,Q\). Diện tích lớn nhất của tứ giác bằng bao nhiêu?

Xét tứ giác \(MNPQ\) có \(\left\{ \begin{array}{l}MQ{\rm{//}}NP{\rm{//}}AB\\MN{\rm{//}}PQ{\rm{//}}CD\end{array} \right.\)\( \Rightarrow MNPQ\) là hình bình hành.
Mặt khác, \(AB \bot CD \Rightarrow MQ \bot MN\). Do đó, \(MNPQ\) là hình chữ nhật.
Vì \(MQ{\rm{//}}AB\) nên \(\dfrac{{MQ}}{{AB}} = \dfrac{{CM}}{{CB}} = x \Rightarrow MQ = x.AB = 6x\).
Theo giả thiết \(MC = x.BC \Rightarrow BM = \left( {1 - x} \right)BC\).
Vì \(MN{\rm{//}}CD\) nên \(\dfrac{{MN}}{{CD}} = \dfrac{{BM}}{{BC}} = 1 - x \Rightarrow MN = \left( {1 - x} \right).CD = 6\left( {1 - x} \right)\).
Diện tích hình chữ nhật \(MNPQ\) là
\({S_{MNPQ}} = MN.MQ = 6\left( {1 - x} \right).6x = 36.x.\left( {1 - x} \right) \le 36{\left( {\dfrac{{x + 1 - x}}{2}} \right)^2} = 9\) .
Ta có \({S_{MNPQ}} = 9\) khi \(x = 1 - x \Leftrightarrow x = \dfrac{1}{2}\) .
Vậy diện tích tứ giác \(MNPQ\) lớn nhất bằng \(9\) khi \(M\) là trung điểm của \(BC\).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trung điểm H của cạnh AB. Biết tam giác SAB là tam giác đều. Số đo của góc giữa SA và CD là

Bước 1:
\(CD||AB \Rightarrow \widehat {\left( {SA,CD} \right)}\)\( = \widehat {\left( {SA,AB} \right)} = \widehat {SAB}\)
Bước 2:
Vì tam giác SAB là tam giác đều.
\( \Rightarrow \widehat {SAB} = 60^\circ \)
Vậy góc giữa SA và CD là \({60^0}\)
Cho tứ diện $A B C D$ có $A B$ vuông góc với mặt phẳng $(B C D)$. Biết tam giác $B C D$ vuông tại $C$ và các cạnh $A B=\dfrac{a \sqrt{6}}{2}, A C=a \sqrt{2}, C D=a$. Gọi $E$ là trung điểm của $A C$. Góc giữa hai đường thẳng $A B$ và $D E$ bằng
$60^{\circ}$
$60^{\circ}$
$60^{\circ}$

Bước 1: Gọi $F$ là trung điểm của $B C$. Xác định góc giữa AB và DE
Gọi $F$ là trung điểm của $B C$
Xét $\Delta A B C$ có $E ; F$ lần lượt là trung điểm của $A C ; B C$
$\Rightarrow E F$ là đường trung bình của $\Delta A B C$
$\Rightarrow E F / / A B \Rightarrow(\widehat{A B, D E})=(\widehat{E F, D E})$
Ta có $A B \perp(B C D) \Rightarrow E F \perp(B C D) \Rightarrow E F \perp F D$
(vì $F D \subset(B C D)$ )
$\Rightarrow \Delta E F D$ vuông tại $F$ do đó $(\widehat{E F, D E})=\widehat{F E D}$
Bước 2: Tính góc $FED$ và kết luận.
Lại có $\left\{\begin{array}{l}C D \perp B C \\ C D \perp A B\end{array} \Rightarrow C D \perp(A B C) \Rightarrow C D \perp A C\right.$ hay $\Delta A C D$ vuông tại $C$
Xét tam giác vuông $E C D$ có
$E D=\sqrt{E C^{2}+C D^{2}}=\sqrt{\left(\dfrac{A C}{2}\right)^{2}+C D^{2}}=\sqrt{\left(\dfrac{a \sqrt{2}}{2}\right)^{2}+a^{2}}=\dfrac{a \sqrt{6}}{2} .$
Xét $\Delta E F D$ vuông có $\cos \widehat{F E D}=\dfrac{E F}{E D}=\dfrac{A B}{2 E D}=\dfrac{1}{2} \Rightarrow \widehat{F E D}=60^{\circ}$
Vậy góc giữa hai đường thẳng $A B$ và $D E$ bằng $60^{\circ}$
