Cho cấp số cộng \(\left( {{u_n}} \right)\) xác định bởi \({u_3} = - 2\) và \({u_{n + 1}} = {u_n} + 3,\,\,\forall n \in N^*.\) Xác định số hạng tổng quát của cấp số cộng đó.
\({u_{n + 1}} = {u_n} + 3 \Rightarrow \left( {{u_n}} \right)\) là CSC có công sai $d = 3.$
\({u_3} = {u_1} + 2d\) \( \Rightarrow {u_1} = {u_3} - 2d = - 2 - 2.3 = - 8\)
Vậy số hạng tổng quát của CSC trên là \({u_n} = {u_1} + \left( {n - 1} \right)d = - 8 + \left( {n - 1} \right).3 = 3n - 11.\)
Cho cấp số cộng \(\left( {{x_n}} \right)\) có \({S_n} = 3{n^2} - 2n\). Tìm số hạng đầu ${u_1}$ và công sai $d$ của cấp số cộng đó.
Ta có \({S_1} = 3.1 - 2.1 = 1 = {u_1},\) \({S_2} = {3.2^2} - 2.2 = 8 = {u_1} + {u_2} \) \(\Rightarrow {u_2} = 7 \Rightarrow d = {u_1} - {u_2} = 6\)
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_2} = 2017\) và \({u_5} = 1945.\) Tính \({u_{2018}}\) .
\(\left\{ \begin{array}{l}{u_2} = 2017\\{u_5} = 1945\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + d = 2017\\{u_1} + 4d = 1945\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2041\\d = - 24\end{array} \right. \\ \Rightarrow {u_{2018}} = {u_1} + 2017d \\= 2041 + 2017\left( { - 24} \right) = - 46367\)
Cho cấp số cộng $6;x; - 2;y$. Khẳng định nào sau đây đúng ?
Ta có \(\left\{ \begin{array}{l}6 - 2 = 2x\\x + y = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = - 6\end{array} \right.\)
Cho cấp số cộng \(\left( {{u_n}} \right)\) với \(\left\{ \begin{array}{l}{u_3} + {u_5} = 5\\{u_3}.{u_5} = 6\end{array} \right..\) Tìm số hạng đầu của cấp số cộng.
\(\left\{ \begin{array}{l}{u_3} + {u_5} = 5\\{u_3}.{u_5} = 6\end{array} \right. \Rightarrow {u_3},{u_5}\) là nghiệm của phương trình ${X^2} - 5X + 6 = 0 \Rightarrow \left[ \begin{array}{l}X = 3\\X = 2\end{array} \right. \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{u_3} = 3\\{u_5} = 2\end{array} \right.\\\left\{ \begin{array}{l}{u_3} = 2\\{u_5} = 3\end{array} \right.\end{array} \right.$
TH1 : \(\left\{ \begin{array}{l}{u_3} = 3\\{u_5} = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{u_1} + 2d = 3\\{u_1} + 4d = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 4\\d = - \dfrac{1}{2}\end{array} \right.\)
TH2 : \(\left\{ \begin{array}{l}{u_3} = 2\\{u_5} = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{u_1} + 2d = 2\\{u_1} + 4d = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = \dfrac{1}{2}\end{array} \right.\)
Vậy $\left[ \begin{array}{l}{u_1} = 1\\{u_1} = 4\end{array} \right.$.
Cho các số thực $x,y,z$ thỏa mãn điều kiện ba số \(\dfrac{1}{{x + y}},\dfrac{1}{{y + z}},\dfrac{1}{{z + x}}\) theo thứ tự lập thành một cấp số cộng. Mệnh đề nào dưới đây là mệnh đề đúng ?
Ta có
\(\dfrac{1}{{x + y}} + \dfrac{1}{{z + x}} = 2\dfrac{1}{{y + z}} \Rightarrow yz + {z^2} + xy + xz + xy + xz + {y^2} + yz = 2\left( {xz + {x^2} + yz + xy} \right) \Leftrightarrow {z^2} + {y^2} = 2{x^2}\)
Vậy ba số \({y^2},{x^2},{z^2}\) theo thứ tự lập thành cấp số cộng.
Viết sáu số xen giữa $3$ và $24$ để được một cấp số cộng có $8$ số hạng. Sáu số hạng cần viết thêm là :
\(\left\{ \begin{array}{l}{u_1} = 3\\{u_8} = 24 = {u_1} + 7d\end{array} \right. \Rightarrow 24 = 3 + 7d \Rightarrow d = 3 \Rightarrow \) Sáu số hạng cần viết thêm là: $6,9,12,15,18,21$.
Nghiệm của phương trình $1 + 7 + 13 + \ldots + x = 280$ là:
Ta thấy tổng $1 + 7 + 13 + \ldots + x$ là tổng của cấp số cộng với \({u_1} = 1,d = 6\).
Giả sử $x$ là số hạng thứ $n$, khi đó \(x = {u_1} + \left( {n - 1} \right)d = 1 + \left( {n - 1} \right)6\), và $\begin{array}{l}1 + 7 + 13 + \ldots + x = \dfrac{{n\left( {2{u_1} + \left( {n - 1} \right)d} \right)}}{2} = \dfrac{{n\left( {2 + \left( {n - 1} \right).6} \right)}}{2} = 280\\ \Rightarrow 2n + 6n\left( {n - 1} \right) = 560\\ \Leftrightarrow 6{n^2} - 4n - 560 = 0 \Leftrightarrow n = 10\end{array}$
Vậy \(x = 1 + 9.6 = 55\).
Cho cấp số cộng \(\left( {{u_n}} \right)\) có công sai d = 2 và \(u_2^2 + u_3^2 + u_4^2\) đạt giá trị nhỏ nhất. Số $2018$ là số hạng thứ bao nhiêu của cấp số cộng \(\left( {{u_n}} \right)\)?
\(\begin{array}{l}u_2^2 + u_3^2 + u_4^2 = {\left( {{u_1} + 2} \right)^2} + {\left( {{u_1} + 4} \right)^2} + {\left( {{u_1} + 6} \right)^2} = 3u_1^2 + 24{u_1} + 56\\ = 3\left( {u_1^2 + 8{u_1}} \right) + 56 = 3{\left( {{u_1} + 4} \right)^2} + 8 \ge 8\end{array}\)
Dấu “=” xảy ra khi và chỉ khi \({u_1} + 4 = 0 \Rightarrow {u_1} = - 4\)
Số hạng tổng quát \({u_n} = {u_1} + \left( {n - 1} \right)d = - 4 + \left( {n - 1} \right).2 = 2n - 6\).
Nếu \({u_n} = 2018 \Rightarrow 2n - 6 = 2018 \Leftrightarrow n = 1012\)
Cho cấp số cộng \(\left( {{x_n}} \right)\) có \({x_3} + {x_{13}} = 80.\) Tính tổng ${S_{15}}$ của $15$ số hạng đầu tiên của cấp số cộng đó?
Ta có \({x_3} + {x_{13}} = 80 \Leftrightarrow {x_1} + 2d + {x_1} + 12d = 80 \Leftrightarrow 2{x_1} + 14d = 80\)
\({S_{15}} = \dfrac{{15\left( {2{x_1} + 14d} \right)}}{2} = \dfrac{{15.80}}{2} = 600\) .
Biết rằng tồn tại các giá trị của \(x \in \left[ {0;2\pi } \right]\) để ba số \(1 + \sin x,\,\,{\sin ^2}x,\,\,1 + \sin 3x\) lập thành một cấp số cộng, tính tổng $S$ các giá trị đó của $x$.
Ta có
$\begin{array}{l}1 + \sin x + 1 + \sin 3x = 2{\sin ^2}x\\ \Leftrightarrow 2 + \sin x + 3\sin x - 4{\sin ^3}x = 2{\sin ^2}x\\ \Leftrightarrow 4{\sin ^3}x + 2{\sin ^2}x - 4\sin x - 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = \pm 1\\\sin x = - \dfrac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\sin x = - \dfrac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k\pi \\x = - \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right.\,\,\left( {k \in Z} \right)\\ + )\,\,x = \dfrac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right);\,\,x \in \left[ {0;2\pi } \right] \Rightarrow 0 \le \dfrac{\pi }{2} + k\pi \le 2\pi \\\Leftrightarrow - \dfrac{1}{2} \le k \le \dfrac{3}{2}\mathop \Leftrightarrow \limits^{k \in Z} \left\{ \begin{array}{l}k = 0\\k = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = \dfrac{\pi }{2}\\x = \dfrac{{3\pi }}{2}\end{array} \right.\\ + )x = - \dfrac{\pi }{6} + k2\pi \,\,\left( {k \in Z} \right);\,\,x \in \left[ {0;2\pi } \right] \Rightarrow 0 \le - \dfrac{\pi }{6} + k2\pi \le 2\pi \\ \Leftrightarrow \dfrac{1}{{12}} \le k \le \dfrac{{13}}{{12}}\mathop \Leftrightarrow \limits^{k \in Z} k = 1 \Rightarrow x = \dfrac{{11\pi }}{6}\\ + )x = \dfrac{{7\pi }}{6} + k2\pi \,\,\left( {k \in Z} \right);\,\,x \in \left[ {0;2\pi } \right] \Rightarrow 0 \le \dfrac{{7\pi }}{6} + k2\pi \le 2\pi \\ \Leftrightarrow \dfrac{{ - 7}}{{12}} \le k \le \dfrac{5}{{12}}\mathop \Leftrightarrow \limits^{k \in Z} k = 0 \Rightarrow x = \dfrac{{7\pi }}{6}\\ \Rightarrow S = \dfrac{\pi }{2} + \dfrac{{3\pi }}{2} + \dfrac{{11\pi }}{{6}} + \dfrac{{7\pi }}{{6}} = 5\pi \end{array}$
Độ dài $3$ cạnh của một tam giác vuông lập thành một cấp số cộng . Nếu trung bình cộng ba cạnh bằng $6$ thì công sai của cấp số cộng này là:
Gọi 3 cạnh của tam giác vuông là \(a,b,c\left( {a < b < c} \right)\). Khi đó ta có hệ phương trình:
\(\begin{array}{l}\left\{ \begin{array}{l}{a^2} + {b^2} = {c^2}\\a + c = 2b\\\dfrac{{a + b + c}}{3} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a^2} + {b^2} = {c^2}\\a + c = 2b\\a + b + c = 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a^2} + {b^2} = {c^2}\\a + c = 2b\\3b = 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6\\{a^2} + 36 = {c^2}\\a = 12 - c\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = 6\\a = 12 - c\\144 - 24c + {c^2} + 36 = {c^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6\\c = \dfrac{{15}}{2}\\a = \dfrac{9}{2}\end{array} \right. \\ \Rightarrow d = b - a = 6 - \dfrac{9}{2} = \dfrac{3}{2} = 1,5\end{array}\)
Trên một bàn cờ có nhiều ô vuông. Người ta đặt $7$ hạt dẻ vào ô vuông đầu tiên, sau đó đặt tiếp vào ô vuông thứ hai nhiều hơn ô đầu tiên là $5$ hạt dẻ, tiếp tục đặt vào ô vuông thứ ba số hạt dẻ nhiều hơn ô thứ hai là $5$ hạt dẻ,… và cứ thế tiếp tục đến ô cuối cùng. Biết rằng đặt hết số ô trên bàn cờ người ta phải sử dụng hết $25450$ hạt dẻ. Hỏi bàn cờ đó có bao nhiêu ô?
Gọi ${u_n}$ là số hạt dẻ ở ô thứ $n$ . Khi đó ta có ${u_1} = 7$ và \({u_{n + 1}} = {u_n} + 5,\forall n \ge 1.\)
Dãy số $\left( {{u_n}} \right)$ là cấp số cộng với ${u_1} = 7$ và công sai $d = 5$ nên ta có
\({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2} = \dfrac{{n\left[ {2.7 + \left( {n - 1} \right)5} \right]}}{2} = \dfrac{{5{n^2} + 9n}}{2}\)
Theo giả thiết ta có \({S_n} = 25450\) \( \Rightarrow \dfrac{{5{n^2} + 9n}}{2} = 25450 \Leftrightarrow n = 100\)
Vậy bàn cờ có $100$ ô.
Cho cấp số cộng có tổng của $4$ số hạng liên tiếp bằng $22$, tổng bình phương của chúng bằng $166$. Bốn số hạng của cấp số cộng này là:
Gọi 4 số hạng liên tiếp của CSC là \(u,u + d,u + 2d,u + 3d\). Theo giả thiết ta có:
$\begin{array}{l}\left\{ \begin{array}{l}u + u + d + u + 2d + u + 3d = 22\\{u^2} + {\left( {u + d} \right)^2} + {\left( {u + 2d} \right)^2} + {\left( {u + 3d} \right)^2} = 166\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4u + 6d = 22\\4{u^2} + 12ud + 14{d^2} = 166\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2u + 3d = 11\\2{u^2} + 6ud + 7{d^2} = 83\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}u = \dfrac{{11 - 3d}}{2}\\\dfrac{{9{d^2} - 66d + 121}}{2} + 6\dfrac{{11 - 3d}}{2}d + 7{d^2} = 83\,\,\left( * \right)\end{array} \right.\\\left( * \right) \Leftrightarrow 9{d^2} - 66d + 121 + 66d - 18{d^2} + 14{d^2} = 166\\ \Leftrightarrow 5{d^2} = 45 \Leftrightarrow d = \pm 3\end{array}$
$d = 3 \Rightarrow u = \dfrac{{11 - 3.3}}{2} = 1 \Rightarrow $ 4 số cần tìm là 1, 4, 7, 10
$d = - 3 \Rightarrow u = \dfrac{{11 - 3\left( { - 3} \right)}}{2} = 10 \Rightarrow $ 4 số cần tìm là $10, 7, 4, 1.$
Mặt sàn tầng một của một ngôi nhà cao hơn mặt sân $0,5m$. Cầu thang đi từ tầng một lên tầng hai gồm $21$ bậc, mỗi bậc cao $18cm$. Ký hiệu ${h_n}$ là độ cao của bậc thứ $n$ so với mặt sân. Viết công thức để tìm độ cao ${h_n}$.
Ký hiệu ${h_n}$ là độ cao bậc $n$ so với mặt sân. Khi đó ta có \({h_{n + 1}} = {h_n} + 0,18\,\,\left( m \right)\), trong đó ${h_1} = 0,5 m$ là độ cao của bậc 1 so với mặt sân.
Dãy số \(\left( {{h_n}} \right)\) là cấp số cộng có \({h_1} = 0,5\) và công sai $d = 0,18$. Suy ra số hạng tổng quát của cấp số cộng này là \({h_n} = {h_1} + \left( {n - 1} \right)d= 0,5+ \left( {n - 1} \right)0,18 \)\( = 0,18n + 0,32\) (mét).
Cho ba số dương $a,b,c$ thỏa mãn điều kiện \(\dfrac{1}{{\sqrt b + \sqrt c }},\dfrac{1}{{\sqrt c + \sqrt a }},\dfrac{1}{{\sqrt a + \sqrt b }}\) lập thành một cấp số cộng. Mệnh đề nào dưới đây là đúng ?
Ta có
\(\begin{array}{l}\dfrac{1}{{\sqrt b + \sqrt c }} + \dfrac{1}{{\sqrt a + \sqrt b }} = \dfrac{2}{{\sqrt c + \sqrt a }}\\ \Leftrightarrow \left( {\sqrt c + \sqrt a } \right)\left( {\sqrt a + \sqrt b } \right) + \left( {\sqrt c + \sqrt a } \right)\left( {\sqrt b + \sqrt c } \right) = 2\left( {\sqrt b + \sqrt c } \right)\left( {\sqrt a + \sqrt b } \right)\\ \Leftrightarrow \sqrt {ac} + \sqrt {bc} + a + \sqrt {ab} + \sqrt {bc} + c + \sqrt {ab} + \sqrt {ac} = 2\sqrt {ab} + 2b + 2\sqrt {ac} + 2\sqrt {bc} \\ \Leftrightarrow a + c = 2b\end{array}\)
Khi đó $a,b,c$ lập thành một cấp số cộng.
Tìm tất cả các giá trị của tham số $m$ để phương trình sau có ba nghiệm phân biệt lập thành một cấp số cộng : \({x^3} - 3m{x^2} + 2m\left( {m - 4} \right)x + 9{m^2} - m = 0\) ?
Cách 1: Giải bài toán bằng cách tự luận:
Giả sử phương trình có ba nghiệm phân biệt \({x_1},{x_2},{x_3}\) lập thành một cấp số cộng. Theo định lí Vi-et ta có \({x_1} + {x_2} + {x_3} = - \dfrac{b}{a} = 3m\)
Vì \({x_1},{x_2},{x_3}\) lập thành một cấp số cộng nên \({x_1} + {x_3} = 2{x_2} \Rightarrow {x_1} + {x_2} + {x_3} = 3{x_2} = 3m \Leftrightarrow {x_2} = m\).
Thay ${x_2} = m$ vào phương trình ban đầu ta được \({m^3} - 3{m^3} + 2{m^2}\left( {m - 4} \right) + 9{m^2} - m = {m^2} - m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 1\end{array} \right.\)
Thử lại:
Khi $m = 0$ , phương trình trở thành \({x^3} = 0 \Leftrightarrow x = 0\), phương trình có nghiệm duy nhất (loại)
Khi $m = 1$ , phương trình trở thành \({x^3} - 3{x^2} - 6x + 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = 1\\x = 4\end{array} \right.\). Dễ thấy $ - 2,1,4$ lập thành 1 cấp số cộng có công sai $d = 3$.
Vậy $m = 1$ thỏa mãn yêu cầu bài toán.
Cách 2: Giải bài toán bằng cách trắc nghiệm.
Thử lần lượt từng đáp án. Trước hết ta thử đáp án A và D vì $m$ nguyên.
Khi $m = 0$ ta có phương trình \({x^3} = 0 \Leftrightarrow x = 0\), phương trình có nghiệm duy nhất (loại)
Khi $m = 1$ phương trình trở thành \({x^3} - 3{x^2} - 6x + 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = 1\\x = 4\end{array} \right.\). Dễ thấy $ - 2,1,4$ lập thành 1 cấp số cộng có công sai $d = 3$ .
Vậy $m = 1$ thỏa mãn yêu cầu bài toán.
Biết rằng tồn tại hai giá trị của tham số $m$ để phương trình sau có bốn nghiệm phân biệt lập thành một cấp số cộng: \({x^4} - 10{x^2} + 2{m^2} + 7m = 0\), tính tổng lập phương của hai giá trị đó.
Đặt \(t = {x^2}\,\,\left( {t \ge 0} \right)\), khi đó phương trình trở thành \({t^2} - 10t + 2{m^2} + 7m = 0\) (*)
Phương trình đã cho có 4 nghiệm dương phân biệt \( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\S > 0\\P > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}25 - 2{m^2} - 7m > 0\\10 > 0\\2{m^2} + 7m > 0\end{array} \right. \Leftrightarrow 0 < 2{m^2} + 7m < 25\)
Với điều kiện trên thì (*) có 2 nghiệm phân biệt dương là \({t_1},{t_2}\,\,\left( {{t_1} < {t_2}} \right)\). Do đó phương trình ban đầu có 4 nghiệm phân biệt được sắp xếp theo thứ tự tăng dần như sau \( - \sqrt {{t_2}} , - \sqrt {{t_1}} ,\sqrt {{t_1}} ,\sqrt {{t_2}} \).
Bốn nghiệm này lập thành cấp số cộng thì \( - \sqrt {{t_1}} + \sqrt {{t_2}} = 2\sqrt {{t_1}} \Leftrightarrow 3\sqrt {{t_1}} = \sqrt {{t_2}} \Leftrightarrow 9{t_1} = {t_2}\)
Mà theo định lí Vi-et ta có \({t_1} + {t_2} = 10 \Leftrightarrow 9{t_2} + {t_2} = 10 \Leftrightarrow {t_2} = 1 \Rightarrow {t_1} = 9\)
Lại có \({t_1}{t_2} = 2{m^2} + 7m = 9 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - \dfrac{9}{2}\end{array} \right.\,\,\left( {tm} \right)\)
Do đó \({1^3} + {\left( { - \dfrac{9}{2}} \right)^3} = - \dfrac{{721}}{8}\)
Cho cấp số cộng \(2;5;8;11;14...\) Công sai của cấp số cộng đã cho bằng
\({u_1} = 2;{u_2} = 5\).
Vì đây là cấp số cộng nên công sai \(d = {u_2} - {u_1} = 3\).
Một người làm việc cho một công ty. Theo hợp đồng trong năm đầu tiên, tháng lương thứ nhất là 6 triệu đồng và lương tháng sau cao hơn tháng trước là 200 ngàn đồng. Hỏi theo hợp đồng tháng thứ 7 người đó nhận được lương là bao nhiêu?
Tháng thứ hai người đó nhận được số tiền là: \(6.000.000 + 200.000 = 6.200.000\) đồng.
Tháng thứ ba người đó nhận được số tiền là: \(6.000.000 + 2 \times 200.000 = 6.400.000\) đồng.
Tháng thứ \(n\) người đó nhận được số tiền là: \(6.000.000 + \left( {n - 1} \right) \times 200.000\) đồng.
\( \Rightarrow \) Tháng thứ 7 người đó nhận được số tiền là: \(6.000.000 + 6 \times 200.000 = 7.200.000\) đồng.