Cho cấp số cộng có tổng của $4$ số hạng liên tiếp bằng $22$, tổng bình phương của chúng bằng $166$. Bốn số hạng của cấp số cộng này là:
Trả lời bởi giáo viên
Gọi 4 số hạng liên tiếp của CSC là \(u,u + d,u + 2d,u + 3d\). Theo giả thiết ta có:
$\begin{array}{l}\left\{ \begin{array}{l}u + u + d + u + 2d + u + 3d = 22\\{u^2} + {\left( {u + d} \right)^2} + {\left( {u + 2d} \right)^2} + {\left( {u + 3d} \right)^2} = 166\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4u + 6d = 22\\4{u^2} + 12ud + 14{d^2} = 166\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2u + 3d = 11\\2{u^2} + 6ud + 7{d^2} = 83\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}u = \dfrac{{11 - 3d}}{2}\\\dfrac{{9{d^2} - 66d + 121}}{2} + 6\dfrac{{11 - 3d}}{2}d + 7{d^2} = 83\,\,\left( * \right)\end{array} \right.\\\left( * \right) \Leftrightarrow 9{d^2} - 66d + 121 + 66d - 18{d^2} + 14{d^2} = 166\\ \Leftrightarrow 5{d^2} = 45 \Leftrightarrow d = \pm 3\end{array}$
$d = 3 \Rightarrow u = \dfrac{{11 - 3.3}}{2} = 1 \Rightarrow $ 4 số cần tìm là 1, 4, 7, 10
$d = - 3 \Rightarrow u = \dfrac{{11 - 3\left( { - 3} \right)}}{2} = 10 \Rightarrow $ 4 số cần tìm là $10, 7, 4, 1.$
Hướng dẫn giải:
Gọi bốn số hạng của cấp số cộng là \(u,u + d,u + 2d,u + 3d\), dựa vào giả thiết lập hệ hai phương trình 2 ẩn $u$ và $d,$ giải hệ phương trình tìm $u, d$ và kết luận.