Bất phương trình \(\log_{{\frac{4}{{25}}}}(x + 1) \ge \log_{{\frac{2}{5}}}x\) tương đương với bất phương trình nào dưới đây?
Ta có ${\log _{\frac{4}{{25}}}}\left( {x + 1} \right) = \dfrac{1}{2}{\log _{\frac{2}{5}}}\left( {x + 1} \right)$ nên bất phương trình đã cho tương đương với:
$\dfrac{1}{2}{\log _{\frac{2}{5}}}\left( {x + 1} \right) \ge {\log _{\frac{2}{5}}}x \Leftrightarrow {\log _{\frac{2}{5}}}\left( {x + 1} \right) \ge 2{\log _{\frac{2}{5}}}x$
Giải bất phương trình $\log_{2}\left( {3x-1} \right) \ge 3$.
Điều kiện: $x > \dfrac{1}{3}$
BPT $ \Leftrightarrow 3x - 1 \ge 8 \Leftrightarrow x \ge 3$
Kết hợp điều kiện ta được $x \ge 3$
Giải bất phương trình \({\log _{\frac{1}{3}}}(x + {9^{500}}) > - 1000\)
Điều kiện $x + {9^{500}} > 0 \Leftrightarrow x > - {9^{500}}$
Vì ${\rm{0 < a}} = \dfrac{1}{3} < 1$ nên
$\begin{array}{l}{\log _{\dfrac{1}{3}}}\left( {x + {9^{500}}} \right) > - 1000 \Leftrightarrow 0 < x + {9^{500}} < {\left( {\dfrac{1}{3}} \right)^{ - 1000}} \Leftrightarrow 0 < x + {9^{500}} < {3^{1000}}\\ \Leftrightarrow - {9^{500}} < x < {3^{1000}} - {9^{500}} \Leftrightarrow - {3^{1000}} < x < {3^{1000}} - {3^{1000}} \Leftrightarrow - {3^{1000}} < x < 0\end{array}$
Số nguyên nhỏ nhất thỏa mãn $\log_{2}\left( {5x-3} \right) > 5$ là:
Điều kiện: $x > \dfrac{3}{5}$
${\log _2}\left( {5x - 3} \right) > 5 \Leftrightarrow 5x - 3 > {2^5} \Leftrightarrow 5x > 35 \Leftrightarrow x > 7$
Vậy số nguyên nhỏ nhất thỏa mãn bất phương trình là \(x = 8\).
Cho $m = {\log _a}\sqrt {ab} $ với $a,b > 1$ và $P = \log _a^2b + 54{\log _b}a$. Khi đó giá trị của $m$ để $P$ đạt giá trị nhỏ nhất là:
Ta có $P = \log _a^2b + 54{\log _b}a = \log _a^2b + \dfrac{{54}}{{{{\log }_a}b}}$
Đặt $t = {\log _a}b$ thì $P = {t^2} + \dfrac{{54}}{t}$
Vì \(a,\,\,b > 1\) nên $t = {\log _a}b > 0$.
Áp dụng bất đẳng thức Cô – si ta có
$P = {t^2} + \dfrac{{54}}{t} = {t^2} + \dfrac{{27}}{t} + \dfrac{{27}}{t} \ge 3\sqrt[3]{{{{27}^2}}} = 27.$
Đẳng thức xảy ra khi và chỉ khi ${t^2} = \dfrac{{27}}{t} \Leftrightarrow t = 3.$
Ta có $m = {\log _a}\sqrt {ab} = \dfrac{1}{2}{\log _a}\left( {ab} \right)$$ = \dfrac{1}{2}\left( {1 + {{\log }_a}b} \right) = \dfrac{1}{2}\left( {1 + t} \right) = \dfrac{1}{2}\left( {1 + 3} \right) = 2$
Tìm tập nghiệm \(S\) của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 1} \right) > {\log _{\frac{1}{2}}}\left( {5 - 2x} \right)\).
Điều kiện \(\left\{ \begin{array}{l}x - 1 > 0\\5 - 2x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 1\\x < \dfrac{5}{2}\end{array} \right.\)
\({\log _{\frac{1}{2}}}\left( {x - 1} \right) > {\log _{\frac{1}{2}}}\left( {5 - 2x} \right) \Leftrightarrow x - 1 < 5 - 2x \Leftrightarrow x < 2\).
Kết hợp với điều kiện suy ra $S= (1;2)$.
Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \(4.{\left( {{{\log }_2}\sqrt x } \right)^2} + {\log _2}x + m \ge 0\) nghiệm đúng với mọi giá trị \(x \in \left[ {1;64} \right]\).
Điều kiện : $x > 0$
\(4.{\left( {{{\log }_2}\sqrt x } \right)^2} + {\log _2}x + m \ge 0 \Leftrightarrow 4.{\left( {{{\log }_2}\sqrt x } \right)^2} + 2.{\log _2}\sqrt x \ge - m\)(1)
Đặt \(t = {\log _2}\sqrt x \). Khi \(x \in \left[ {1;64} \right] \Rightarrow t \in \left[ {0;3} \right]\).
Ta có bất phương trình \(4{t^2} + 2t \ge - m\).
Xét \(f(t) = 4{t^2} + 2t;f'(t) = 8t + 2 > 0,\forall t \in \left[ {0;3} \right]\)
Để (1) nghiệm đúng với \(\forall t \in \left[ {0;3} \right]\) thì $\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( t \right) \ge - m$
\( \Leftrightarrow f(0) \ge - m \Leftrightarrow 0 \ge - m \Leftrightarrow m \ge 0\).
Xét bất phương trình \(\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\). Tìm tất cả các giá trị của tham số \(m\) để bất phương trình có nghiệm thuộc khoảng \(\left( {\sqrt {2;} + \infty } \right)\).
Điều kiện: \(x > 0\)
\(\log _2^2 2x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\)
\( \Leftrightarrow {\left( {1 + {{\log }_2}x} \right)^2} - 2\left( {m + 1} \right){\log _2}x - 2 < 0{\rm{ }}\left( 1 \right)\).
Đặt \(t = {\log _2}x\). Vì $x > \sqrt 2 $ nên ${\log _2}x > {\log _2}\sqrt 2 = \dfrac{1}{2}$.
Do đó $t \in \left( {\dfrac{1}{2}; + \infty } \right)$
\(\left( 1 \right)\) thành \({\left( {1 + t} \right)^2} - 2\left( {m + 1} \right)t - 2 < 0\)\( \Leftrightarrow {t^2} - 2mt - 1 < 0\) \(\left( 2 \right)\)
Yêu cầu bài toán tương đương tìm \(m\) để bpt $(2)$ có nghiệm thuộc \(\left( {\dfrac{1}{2}; + \infty } \right)\).
Xét bất phương trình $(2)$ có: $\Delta ' = {m^2} + 1 > 0,{\rm{ }}\forall m \in \mathbb{R}$.
\(f\left( t \right) = {t^2} - 2mt - 1 = 0\) có \(ac < 0\) nên $f(t)$ luôn có $2$ nghiệm phân biệt \({t_1} < 0 < {t_2}\) nên tập nghiệm của $(2)$ là $(t_1;t_2)$
Khi đó cần \(\dfrac{1}{2} < {t_2} \Leftrightarrow m + \sqrt {{m^2} + 1} > \dfrac{1}{2} \Leftrightarrow m > - \dfrac{3}{4}\)
Tập nghiệm của bất phương trình $\ln\left[ {\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1} \right] > 0$ là:
$\begin{array}{l}\ln \left[ {\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1} \right] > 0 \Leftrightarrow \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1 > 1\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) > 0\end{array}$
$ \Rightarrow x \in (1;2) \cup (3; + \infty )$
Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng $9$ hàng năm người đó đóng vào công ty là $12$ triệu đồng với lãi suất hàng năm không đổi là $6\% $ / năm. Hỏi sau đúng $18$ năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu tiền? Kết quả làm tròn đến hai chữ số phần thập phân.
Gọi số tiền đóng hàng năm là $A = 12$ (triệu đồng), lãi suất là $r = 6\% = 0,06$.
Sau \(1\) năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là \({A_1} = A\left( {1 + r} \right)\). (nhưng người đó không rút mà lại đóng thêm $A$ triệu đồng nữa, nên số tiền gốc để tính lãi năm sau là \({A_1} + A\)).
Sau \(2\) năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là:
\({A_2} = \left( {{A_1} + A} \right)\left( {1 + r} \right) = \left[ {A\left( {1 + r} \right) + A} \right]\left( {1 + r} \right) = A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)\)
Sau \(3\) năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là:
\({A_3} = \left( {{A_2} + A} \right)\left( {1 + r} \right) = \left[ {A{{\left( {1 + r} \right)}^2} + A\left( {1 + r} \right) + A} \right]\left( {1 + r} \right) = A{\left( {1 + r} \right)^3} + A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)\)
…
Sau \(18\) năm, người đó đi rút tiền thì sẽ nhận được số tiền là:
${A_{18}} = A{\left( {1 + r} \right)^{18}} + A{\left( {1 + r} \right)^{17}} + ... + A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)$
Tính: ${A_{18}} = A\left[ {{{\left( {1 + r} \right)}^{18}} + {{\left( {1 + r} \right)}^{17}} + ... + {{\left( {1 + r} \right)}^2} + \left( {1 + r} \right) + 1 - 1} \right]$
$ \Rightarrow {A_{18}} = A\left[ {\dfrac{{{{\left( {1 + r} \right)}^{19}} - 1}}{{\left( {1 + r} \right) - 1}} - 1} \right] = A\left[ {\dfrac{{{{\left( {1 + r} \right)}^{19}} - 1}}{r} - 1} \right] = 12\left[ {\dfrac{{{{\left( {1 + 0,06} \right)}^{19}} - 1}}{{0,06}} - 1} \right] \approx 393,12$
Tập nghiệm của bất phương trình $\log\left( {{x^2} + 25} \right) > \log\left( {10x} \right)$ là:
Điều kiện: $x > 0$
$\log ({x^2} + 25) > \log (10x) \Leftrightarrow {x^2} + 25 > 10x \Leftrightarrow {(x - 5)^2} > 0 \Leftrightarrow x \ne 5$
Tập nghiệm của bất phương trình là: $(0;5) \cup (5; + \infty )$
Cho hai số thực $a$, $b$ thỏa mãn $a > b > \dfrac{4}{3}$ và biểu thức $P = 16{\log _a}\left( {\dfrac{{{a^3}}}{{12b - 16}}} \right) + 3\log _{\frac{a}{b}}^2a$ có giá trị nhỏ nhất. Tính $a + b.$
Ta có: $P = 16{\log _a}\left( {\dfrac{{{a^3}}}{{12b - 16}}} \right) + 3\log _{\frac{a}{b}}^2a$. Vì số hạng thứ hai chứa ${\log _{\frac{a}{b}}}a$ nên ta cố gắng đưa ${\log _a}\left( {\dfrac{{{a^3}}}{{12b - 16}}} \right)$ về ${\log _a}\dfrac{a}{b}$. Điều này buộc ta cần đánh giá $12b - 16 \le {b^3}$. Thật vậy:
Ta có: $12b - 16 \le {b^3} \Leftrightarrow {\left( {b - 2} \right)^2}\left( {b + 4} \right) \ge 0$ (Đúng).
Suy ra: $\dfrac{{{a^3}}}{{12b - 16}} \ge \dfrac{a}{b} > 1$ $ \Rightarrow {\log _a}\left( {\dfrac{{{a^3}}}{{12b - 16}}} \right) \ge {\log _a}{\left( {\dfrac{a}{b}} \right)^3} = 3{\log _a}\dfrac{a}{b} > 0$
Do đó:
$P \ge 48{\log _a}\dfrac{a}{b} + 3\log _{\frac{a}{b}}^2a$ $ = 3\left( {8{{\log }_a}\dfrac{a}{b} + 8{{\log }_a}\dfrac{a}{b} + \log _{\frac{a}{b}}^2a} \right)$
Áp dụng bất đẳng thức Cauchy cho $3$ số dương $8{\log _a}\dfrac{a}{b}$, $8{\log _a}\dfrac{a}{b}$, $\log _{\frac{a}{b}}^2a$ ta được:
$P \ge 3 \cdot 3 \cdot \sqrt[3]{{\left( {8{{\log }_a}\dfrac{a}{b} \cdot 8{{\log }_a}\dfrac{a}{b} \cdot \log _{\frac{a}{b}}^2a} \right)}} = 9\sqrt[3]{{64}} = 36.$
Đẳng thức xảy ra khi và chỉ khi
$\left\{ \begin{array}{l}b = 2\\8{\log _a}\dfrac{a}{b} = \log _{\frac{a}{b}}^2a = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2\\{\log _a}\dfrac{a}{b} = \dfrac{1}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2\\{\log _a}2 = \dfrac{1}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2\\a = 4\end{array} \right..$
Vậy $a + b = 6.$
Tập nghiệm của bất phương trình $({2^{{x^2} - 4}} - 1).\ln {x^2} < 0$ là:
Điều kiện: \(x \ne 0\).
\(\begin{array}{l}({2^{{x^2} - 4}} - 1) \ln{x^2} < 0 \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}({2^{{x^2} - 4}} - 1) > 0\\ \ln{x^2} < 0\end{array} \right.\\\left\{ \begin{array}{l}({2^{{x^2} - 4}} - 1) < 0\\ \ln{x^2} > 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{2^{{x^2} - 4}} > 1\\{x^2} < 1\end{array} \right.\\\left\{ \begin{array}{l}{2^{{x^2} - 4}} < 1\\{x^2} > 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{x^2} - 4 > 0\\{x^2} < 1\end{array} \right.\\\left\{ \begin{array}{l}{x^2} - 4 < 0\\{x^2} > 1\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 2;x < - 2\\ - 1 < x < 1\end{array} \right.\\\left\{ \begin{array}{l} - 2 < x < 2\\x > 1;x < - 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 2 < x < - 1\\1 < x < 2\end{array} \right. \Rightarrow x \in \left( { - 2; - 1} \right) \cup \left( {1;2} \right)\end{array}\)
Tập hợp nghiệm của bất phương trình ${\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)$ là:
Điều kiện: $\left\{ \begin{array}{l}{x^2} - 2x + 1 > 0\\x - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {x - 1} \right)^2} > 0\\x - 1 > 0\end{array} \right. \Leftrightarrow x > 1$
${\log _{\dfrac{1}{3}}}({x^2} - 2x + 1) < {\log _{\dfrac{1}{3}}}(x - 1) \Leftrightarrow {x^2} - 2x + 1 > x - 1 > 0$
$ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 3x + 2 > 0\\x - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {x - 1} \right)(x - 2) > 0\\x - 1 > 0\end{array} \right. \Leftrightarrow x > 2$
Nghiệm của bất phương trình ${\log _2}(x + 1) + {\log _{\frac{1}{2}}}\sqrt {x + 1} \le 0$ là :
Điều kiện $x > -1$.
Khi đó ta có:
$\begin{array}{l}{\log _2}(x + 1) - lo{g_2}\sqrt {x + 1} \le 0 \Leftrightarrow {\log _2}\dfrac{{x + 1}}{{\sqrt {x + 1} }} \le 0 \Leftrightarrow \dfrac{{x + 1}}{{\sqrt {x + 1} }} \le 1\\ \Leftrightarrow \dfrac{{{{(\sqrt {x + 1} )}^2}}}{{\sqrt {x + 1} }} \le 1 \Leftrightarrow \sqrt {x + 1} \le 1 \Leftrightarrow x \le 0\end{array}$
Kết hợp với điều kiện ta được: $ - 1 < x \le 0$
Giải bất phương trình \({\log _{0,7}}\left( {{{\log }_6}\dfrac{{{x^2} + x}}{{x + 4}}} \right) < 0\)
${\log _{0,7}}({\log _6}\dfrac{{{x^2} + x}}{{x + 4}}) < 0$ .
Đkxđ: $\left\{ \begin{array}{l}{\log _6}\dfrac{{{x^2} + x}}{{x + 4}} > 0\\\dfrac{{{x^2} + x}}{{x + 4}} > 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 4 < x < - 2\\x > 2\end{array} \right.(*)$
\(\begin{array}{l}{\log _6}\dfrac{{{x^2} + x}}{{x + 4}} > 0,{7^0} = 1 \Leftrightarrow \dfrac{{{x^2} + x}}{{x + 4}} > 6 \Leftrightarrow \dfrac{{{x^2} + x}}{{x + 4}} - 6 > 0\\ \Leftrightarrow \dfrac{{{x^2} - 5{\rm{x}} - 24}}{{x + 4}} > 0 \Leftrightarrow \dfrac{{(x - 8)(x + 3)}}{{x + 4}} > 0\end{array}\)
Xét dấu \(f\left( x \right) = \dfrac{{(x - 8)(x + 3)}}{{x + 4}}\):
Vậy \( - 4 < x < - 3\) hoặc \(x > 8\).
Kết hợp với điều kiện ta được \( - 4 < x < - 3\) hoặc \(x > 8\).
Tìm tập hợp nghiệm $S$ của bất phương trình: \({\log _{\frac{\pi }{4}}}({x^2} + 1) < {\log _{\frac{\pi }{4}}}(2x + 4)\)
Điều kiện $x>-2$
Bất phương trình \( \Leftrightarrow {x^2} + 1 > 2x + 4\,(do\,\dfrac{\pi }{4} < 1)\) \( \Leftrightarrow {x^2} - 2x - 3 = (x + 1)(x - 3) > 0\)
Nên $x>3$ hoặc $x<-1$.
Kết hợp điều kiện $x>-2$ ta được $x>3$ hoặc $-2<x<-1$.
Giải bất phương trình \({\log _3}({2^x} - 3) < 0\)
Bất phương trình tương đương:
$\left\{ \begin{array}{l}{2^x} - 3 > 0\\{2^x} - 3 < 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > {\log _2}3\\x < 2\end{array} \right. \Leftrightarrow {\log _2}3 < x < 2$.
Xét các số thực \(a\), \(b\) thỏa mãn điều kiện \(\dfrac{1}{3} < b < a < 1\). Tìm giá trị nhỏ nhất của biểu thức $P = {\log _a}\left( {\dfrac{{3b - 1}}{4}} \right) + 12\log _{\frac{b}{a}}^2a - 3$.
$P = {\log _a}\left( {\dfrac{{3b - 1}}{4}} \right) + 12{\left( {{{\log }_{\frac{b}{a}}}a} \right)^2} - 3$$ = {\log _a}\left( {\dfrac{{3b - 1}}{4}} \right) + 12{\left( {\dfrac{1}{{{{\log }_a}\dfrac{b}{a}}}} \right)^2} - 3$$ = {\log _a}\left( {\dfrac{{3b - 1}}{4}} \right) + 12{\left( {\dfrac{1}{{{{\log }_a}b - 1}}} \right)^2} - 3$
Ta có: $\dfrac{{3b - 1}}{4} \le {b^3}$$ \Leftrightarrow 3b - 1 \le 4{b^3}$$ \Leftrightarrow 4{b^3} - 3b + 1 \ge 0$$ \Leftrightarrow \left( {b + 1} \right)\left( {4{b^2} - 4b + 1} \right) \ge 0$
$ \Leftrightarrow \left( {b + 1} \right){\left( {2b - 1} \right)^2} \ge 0$ (luôn đúng với \(\dfrac{1}{3} < b < 1\))
$ \Rightarrow {\log _a}\left( {\dfrac{{3b - 1}}{4}} \right) \ge {\log _a}{b^3}$ ( vì \(a < 1\)) $ \Rightarrow {\log _a}\left( {\dfrac{{3b - 1}}{4}} \right) \ge 3{\log _a}b$
Do đó $P \ge 3{\log _a}b + \dfrac{{12}}{{{{\left( {{{\log }_a}b - 1} \right)}^2}}} - 3$$ \Leftrightarrow P \ge 3\left( {{{\log }_a}b - 1} \right) + \dfrac{{12}}{{{{\left( {{{\log }_a}b - 1} \right)}^2}}}$ \(\left( * \right)\)
Vì \(\dfrac{1}{3} < b < a < 1\) nên \({\log _a}b > 1\)
Áp dụng bất đẳng thức Côsi cho \(3\) số dương: \(\dfrac{3}{2}\left( {{{\log }_a}b - 1} \right)\), \(\dfrac{3}{2}\left( {{{\log }_a}b - 1} \right)\), $\dfrac{{12}}{{{{\left( {{{\log }_a}b - 1} \right)}^2}}}$
\(\dfrac{3}{2}\left( {{{\log }_a}b - 1} \right) + \dfrac{3}{2}\left( {{{\log }_a}b - 1} \right) + \dfrac{{12}}{{{{\left( {{{\log }_a}b - 1} \right)}^2}}}\)\( \ge 3.\,\sqrt[3]{{\dfrac{3}{2}\left( {{{\log }_a}b - 1} \right).\dfrac{3}{2}\left( {{{\log }_a}b - 1} \right).\dfrac{{12}}{{{{\left( {{{\log }_a}b - 1} \right)}^2}}}}}\)
\( \Leftrightarrow 3\left( {{{\log }_a}b - 1} \right) + \dfrac{{12}}{{{{\left( {{{\log }_a}b - 1} \right)}^2}}} \ge 9\) \(\left( {**} \right)\)
Từ \(\left( * \right)\)và \(\left( {**} \right)\) ta có \(P \ge 9\)
Dấu bằng xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}b = \dfrac{1}{2}\\\dfrac{3}{2}\left( {{{\log }_a}b - 1} \right) = \dfrac{{12}}{{{{\left( {{{\log }_a}b - 1} \right)}^2}}}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{1}{2}\\{\left( {{{\log }_a}b - 1} \right)^3} = 8\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{1}{2}\\{\log _a}b - 1 = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{1}{2}\\{\log _a}b = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{1}{2}\\b = {a^3}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{1}{2}\\a = \sqrt[3]{b} = \sqrt[3]{{\dfrac{1}{2}}}\end{array} \right.\)
Vậy \(\min P = 9\)
Với \(m\) là tham số thực dương khác $1$. Hãy tìm tập nghiệm \(S\) của bất phương trình
\({\log _m}(2{x^2} + x + 3) \le {\log _m}(3{x^2} - x)\). Biết rằng \(x = 1\) là một nghiệm của bất phương trình.
Điều kiện: \(\left\{ \begin{array}{l}2{x^2} + x + 3 > 0\\3{x^2} - x > 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > \dfrac{1}{3}\\x < 0\end{array} \right.\)
Do \(x=1\) là một nghiệm của bất phương trình nên \({\log _m}(2.{1^2} + 1 + 3) \le {\log _m}(3.{1^2} - 1) \Leftrightarrow {\log _m}6 \le {\log _m}2 \Leftrightarrow 0<m < 1\)
Khi đó, ta có:
\({\log _m}(2{x^2} + x + 3) \le {\log _m}(3{x^2} - x)\)
\(\Leftrightarrow 2{x^2} + x + 3 \ge 3{x^2} - x\)\( \Leftrightarrow {x^2} - 2x - 3 \le 0 \Leftrightarrow - 1 \le x \le 3\)
Kết hợp với điều kiện xác định ta có nghiệm của bpt là : \(S = \left[ { - 1;0} \right) \cup \left( {\dfrac{1}{3};3} \right)\)