Câu hỏi:
2 năm trước
Bất phương trình \(\log_{{\frac{4}{{25}}}}(x + 1) \ge \log_{{\frac{2}{5}}}x\) tương đương với bất phương trình nào dưới đây?
Trả lời bởi giáo viên
Đáp án đúng: c
Ta có ${\log _{\frac{4}{{25}}}}\left( {x + 1} \right) = \dfrac{1}{2}{\log _{\frac{2}{5}}}\left( {x + 1} \right)$ nên bất phương trình đã cho tương đương với:
$\dfrac{1}{2}{\log _{\frac{2}{5}}}\left( {x + 1} \right) \ge {\log _{\frac{2}{5}}}x \Leftrightarrow {\log _{\frac{2}{5}}}\left( {x + 1} \right) \ge 2{\log _{\frac{2}{5}}}x$
Hướng dẫn giải:
Sử dụng công thức biến đổi logarit \({\log _{{a^n}}}b = \dfrac{1}{n}{\log _a}b\)