Cho đoạn thẳng $AB$ có độ dài $3cm$và đường thẳng $d$ . Đoạn thẳng $A'B'$ đối xứng với $AB$ qua $d$ . Độ dài đoạn thẳng $A'B'$ là:
Vì đoạn thẳng $A'B'$ đối xứng với $AB$ qua $d$ nên \(A'B' = AB = 3\,cm\) .
Cho tam giác $ABC$ và tam giác $A'B'C'$ đối xứng nhau qua đường thẳng $d$ biết $AB = 4cm,BC = 7cm$ và chu vi của tam giác $ABC = 17cm$. Khi đó độ dài cạnh $C'A'$ của tam giác $A'B'C'$ là:
+ Xét tam giác \(ABC\) có chu vi \({P_{ABC}} = AB + AC + BC \Rightarrow AC = {P_{ABC}} - AB - BC = 17 - 4 - 7\) \( = 6\,cm\) .
+ Vì tam giác $ABC$ và tam giác $A'B'C'$ đối xứng nhau qua đường thẳng $d$ nên \(AC = A'C' = 6\,cm\) .
Cho tam giác \(ABC\), trong đó \(AB = 11\,cm,AC = 15\,cm\). Vẽ hình đối xứng với tam giác \(ABC\) qua trục là cạnh \(BC\). Chu vi của tứ giác tạo thành là:
Gọi \(A'\) là điểm đối xứng với \(A\) qua \(BC\) . Khi đó tam giác \(A'BC\) đối xứng với tam giác \(ABC\) qua \(BC\) .
Tứ giác tạo thành là \(ABCA'\) .
Ta có \(A'B = AB = 11\,cm\) (vì \(A'B\) và \(AB\) đối xứng nhau qua \(BC\) )
\(A'C = AC = 15\,cm\) ( vì \(A'C\) và \(AC\) đối xứng nhau qua \(BC\) )
Chu vi tứ giác \(ABCA'\) là \(P = AB + AC + A'B + A'C = 11 + 15 + 11 + 15 = 52\,cm\) .
Cho hình vuông $ABCD$ cạnh bằng $a$. $M$ và $N$ là hai điểm lưu động lần lượt trên cạnh $AB$ và $AD$ sao cho \(\widehat {MCN} = {45^0}\). Vẽ tia $Cx$ vuông góc với $CN,Cx$ cắt đường thẳng $AB$ tại $E$.
Chọn kết luận đúng nhất.
Ta có $CN \bot CE\,\left( {gt} \right)$ mà \(\widehat {MCN} = {45^0}\) nên \(\widehat {MCE} = {45^0}\) hay $\widehat {{C_2}} + \widehat {{C_3}} = {45^0}$. Mà $\widehat {{C_1}} + \widehat {{C_3}} = {45^0}$(vì \(\widehat {MCN} = {45^0}\)) nên $\widehat {{C_1}} = \widehat {{C_2}}$.
Xét tam giác $CDN$ và tam giác $CBE$ có:
$BC = DC$ (do $ABCD$ là hình vuông); \(\widehat D = \widehat B = {90^0}\) ; $\widehat {{C_1}} = \widehat {{C_2}}$(cmt)
Suy ra \(\Delta CDN = \Delta CBE(g.c.g)\) .Suy ra $CN = CE$
Xét tam giác $CEN$ có $CN = CE$ (cmt) nên tam giác $CEN$ là tam giác cân tại $C$.
Suy ra phân giác $CM$ đồng thời là đường trung trực của $NE$ .
Vậy E là điểm đối xứng của $N$ qua $CM$ .
Cho hình vuông $ABCD$ cạnh bằng $a$. $M$ và $N$ là hai điểm lưu động lần lượt trên cạnh $AB$ và $AD$ sao cho \(\widehat {MCN} = {45^0}\). Vẽ tia $Cx$ vuông góc với $CN,Cx$ cắt đường thẳng $AB$ tại $E$.
Tính chu vi của tam giác \(AMN\) theo \(a\) .
Ta có: \(\Delta CMN = \Delta CME\)(do tính đối xứng qua $CM$ )
Nên $MN = ME$
Suy ra chu vi tam giác \(AMN\) là:
$AM + AN + MN = AM + AN{\rm{ }} + ME = AM + AN + MB + BE$
$ = AM + AN + MB + ND$ (vì \(\Delta CDN = \Delta CBE\) (cmt) nên $BE = ND$)
$ = \left( {AM{\rm{ }} + MB} \right) + \left( {AN + ND} \right) = 2a$
Vậy chu vi tam giác $AMN$ bằng $2a$ .
Cho tam giác \(ABC\) có \(\widehat A = {20^0};\widehat B = {80^0}\), \(d\) là trung trực của cạnh \(AB\). Trên cạnh \(AC\), lấy điểm \(M\) sao cho \(AM = BC\) và gọi \(M'\) là điểm đối xứng của \(M\) qua \(d\).
Tam giác \(M'BC\) là tam giác gì? Chọn đáp án đúng nhất.
Do tính chất đối xứng qua \(d\), ta có \(AM = BM'\).
Mà \(AM = BC\left( {gt} \right)\) nên \(BM' = BC\).
Ta lại có: \(\widehat {M'BA} = \widehat {MAB} = {20^0}\) (do \(M,{\rm{ }}A\) đối xứng với \(M',{\rm{ }}B\) qua \(d\)).
Suy ra \(\widehat {M'BC} = \widehat B - {20^0} = {80^0} - {20^0} = {60^0}\).
Xét tam giác \(M'BC\) có \(BM' = BC\), \(\widehat {M'BC} = {60^0}\) do đó tam giác \(M'BC\) là tam giác đều.
Cho tam giác \(ABC\) có \(\widehat A = {20^0};\widehat B = {80^0}\), \(d\) là trung trực của cạnh \(AB\). Trên cạnh \(AC\), lấy điểm \(M\) sao cho \(AM = BC\) và gọi \(M'\) là điểm đối xứng của \(M\) qua \(d\).
Tính góc \(BMC\).
Ta cũng có: \(\widehat {MCB} = {180^0} - \left( {\widehat A + \widehat B} \right) = {180^0} - \left( {{{20}^0} + {{80}^0}} \right) = {80^0}\)
Suy ra \(\widehat {MCM'} = \widehat {MCB} - \widehat {M'CB} = {80^0} - {60^0} = {20^0}\)
Mà \(\widehat {CMM'} = \widehat A = {20^0}\)(góc đồng vị).
Nên \(\widehat {MCM'} = \widehat {CMM'} = {20^ \circ }\)
Suy ra \(M'C = M'M = M'B\).
Ta lại có: \(\widehat {M'MB} = \widehat {M'BM}\) (tam giác \(M'MB\) cân tại đỉnh \(M'\)); \(\widehat {M'MB} = \widehat {MBA}\)(so le trong).
Nên \(\widehat {M'BM} = \widehat {MBA} = \dfrac{1}{2}\widehat {M'BA} = {10^0}\)
Vậy \(\widehat {BMC} = \widehat {CMM'} + \widehat {M'MB} = {20^0} + {10^0} = {30^0}\)
Cho hai điểm $A,B$ nằm trên cùng một nửa mặt phẳng bờ là đường thẳng $d$ . Gọi $B'$ là điểm đối xứng của $B$ qua đường thẳng $d$. Tìm trên đường thẳng $d$ điểm $M$ sao cho tổng $MA + MB$ nhỏ nhất. Chọn khẳng định đúng nhất.
Gọi $B'$ là điểm đối xứng của $B$ qua đường thẳng $d$. $B'$ cố định.
Ta có $MB = MB'$ (tính chất đối xứng trục).
Xét ba điểm $M,{\rm{ }}A,{\rm{ }}B'$ ta có $MA + MB' \ge AB'$
Do đó $MA + MB \ge AB'$
Dấu “=” xảy ra khi và chỉ khi $A,M,B'$ thẳng hàng theo thứ tự đó hay $M$ là giao điểm của đoạn $AB'$ và đường thẳng $d$ .
Vậy khi \(M \equiv M'\) là giao điểm của đoạn thẳng $AB'$ và đường thẳng $d$ thì tổng $MA + MB$ nhỏ nhất, trong đó $B'$ là điểm đối xứng của $B$ qua $d$ .
Trên tia phân giác góc ngoài tại đỉnh \(C\) của tam giác \(ABC,\) lấy điểm \(M\) (\(M\) khác \(C\)). Chọn câu đúng.
Trên tia đối của tia \(CB\) lấy điểm \(A'\) sao cho \(CA = CA'\)
Khi đó ta có: \(\Delta CAA'\) cân tại \(C\) có \(CM\) là phân giác \(\widehat {ACA'}\) nên \(CM\) cũng là đường trung trực của \(AA'\).
Từ đó ta có: \(MA = MA'\)
Nên \(MA + MB = MA' + MB\).
Xét tam giác \(MA'B\) có \(MA' + MB > A'B \Leftrightarrow MA + MB > A'C + BC\)
Hay \(MA + MB > AC + BC\) (vì \(CA = CA'\)).