Cho \(ad = bc\,\,\left( {cd \ne 0;{c^2} \ne 3{d^2}} \right)\). Khi đó \(\dfrac{{{a^2} - 3{b^2}}}{{{c^2} - 3{d^2}}}\) bằng:
Ta xét: \(\left( {{a^2} - 3{b^2}} \right)cd = {a^2}cd - 3{b^2}cd = ac.ad - 3bd.bc\) \( = ac.ad - 3bd.ad = ad\left( {ac - 3bd} \right)\) (1) (do \(ad = bc\))
Và \(\left( {{c^2} - 3{d^2}} \right)ab = {c^2}ab - 3{d^2}ab = ac.bc - 3bd.ad\)\( = ac.ad - 3bd.ad = ad\left( {ac - 3bd} \right)\) (2) (do \(ad = bc\))
Từ (1) và (2) suy ra: \(\left( {{a^2} - 3{b^2}} \right)cd = \left( {{c^2} - 3{d^2}} \right)ab\)
Từ đó ta có: \(\dfrac{{{a^2} - 3{b^2}}}{{{c^2} - 3{d^2}}} = \dfrac{{ab}}{{cd}}\)
Cho \(a > b > 0\). Chọn câu đúng.
Do \(a > b > 0\) nên \(a + b > 0;a - b > 0\)
Ta có \(\dfrac{{{{\left( {a + b} \right)}^2}}}{{{a^2} - {b^2}}} = \dfrac{{{{\left( {a + b} \right)}^2}}}{{\left( {a - b} \right)\left( {a + b} \right)}}\) \( = \dfrac{{{{\left( {a + b} \right)}^2}:\left( {a + b} \right)}}{{\left( {a - b} \right)\left( {a + b} \right):\left( {a + b} \right)}} = \dfrac{{a + b}}{{a - b}}\)
Nhân cả tử và mẫu của phân thức \(\dfrac{{a + b}}{{a - b}}\) với \(\left( {a - b} \right)\) ta được:
\(\dfrac{{a + b}}{{a - b}} = \dfrac{{\left( {a + b} \right)\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {a - b} \right)}} = \dfrac{{{a^2} - {b^2}}}{{{{\left( {a - b} \right)}^2}}}\) \( < \dfrac{{{a^2} + {b^2}}}{{{{\left( {a - b} \right)}^2}}}\) (do \(0 < {a^2} - {b^2} < {a^2} + {b^2}\))