Trả lời bởi giáo viên
Do \(a > b > 0\) nên \(a + b > 0;a - b > 0\)
Ta có \(\dfrac{{{{\left( {a + b} \right)}^2}}}{{{a^2} - {b^2}}} = \dfrac{{{{\left( {a + b} \right)}^2}}}{{\left( {a - b} \right)\left( {a + b} \right)}}\) \( = \dfrac{{{{\left( {a + b} \right)}^2}:\left( {a + b} \right)}}{{\left( {a - b} \right)\left( {a + b} \right):\left( {a + b} \right)}} = \dfrac{{a + b}}{{a - b}}\)
Nhân cả tử và mẫu của phân thức \(\dfrac{{a + b}}{{a - b}}\) với \(\left( {a - b} \right)\) ta được:
\(\dfrac{{a + b}}{{a - b}} = \dfrac{{\left( {a + b} \right)\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {a - b} \right)}} = \dfrac{{{a^2} - {b^2}}}{{{{\left( {a - b} \right)}^2}}}\) \( < \dfrac{{{a^2} + {b^2}}}{{{{\left( {a - b} \right)}^2}}}\) (do \(0 < {a^2} - {b^2} < {a^2} + {b^2}\))
Hướng dẫn giải:
Sử dụng tính chất cơ bản của phân thức để biến đổi.
+ \(\dfrac{A}{B} = \dfrac{{A.M}}{{B.M}}\) (\(M\) là một đa thức khác \(0\))
+ \(\dfrac{A}{B} = \dfrac{{A:N}}{{B:N}}\) (\(N\) là một nhân tử chung, \(N\) khác đa thức \(0\))