Các bài toán về đường thẳng và mặt phẳng

Kỳ thi ĐGNL ĐHQG Hà Nội

Đổi lựa chọn

Câu 21 Trắc nghiệm

Trong không gian Oxyz, cho hai điểm \(A\left( {2; - 2;4} \right);\,\,B\left( { - 3;3; - 1} \right)\) và mặt phẳng \(\left( P \right):\,\,2x - y + 2z - 8 = 0\). Xét điểm M là điểm thay đổi thuộc \(\left( P \right)\), giá trị nhỏ nhất của \(2M{A^2} + 3M{B^2}\) bằng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Gọi \(I\left( {a;b;c} \right)\) là điểm thỏa mãn đẳng thức : \(2\overrightarrow {IA}  + 3\overrightarrow {IB}  = \overrightarrow 0 \)

\(\begin{array}{l} \Rightarrow 2\left( {2 - a; - 2 - b;4 - c} \right) + 3\left( { - 3 - a;3 - b; - 1 - c} \right) = \overrightarrow 0 \\ \Rightarrow \left\{ \begin{array}{l}4 - 2a - 9 - 3a = 0\\ - 4 - 2b + 9 - 3b = 0\\8 - 2c - 3 - 3c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 5a - 5 = 0\\ - 5b + 5 = 0\\ - 5c + 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 1\\c = 1\end{array} \right. \Rightarrow I\left( { - 1;\;1;\;1} \right)\end{array}\)

Ta có :

\(\begin{array}{l}2M{A^2} + 3M{B^2} = 2{\overrightarrow {MA} ^2} + 3{\overrightarrow {MB} ^2}\\ = 2{\left( {\overrightarrow {MI}  + \overrightarrow {IA} } \right)^2} + 3{\left( {\overrightarrow {MI}  + \overrightarrow {IB} } \right)^2}\\ = 5M{I^2} + \left( {2I{A^2} + 3I{B^2}} \right) + \overrightarrow {MI} \left( {2\overrightarrow {IA}  + 3\overrightarrow {IB} } \right)\\ = 5M{I^2} + \left( {2I{A^2} + 3I{B^2}} \right)\end{array}\)

Do I, A, B cố định nên \(2I{A^2} + 3I{B^2} = const\).

 \( \Rightarrow {\left( {2M{A^2} + 3M{B^2}} \right)_{\min }} \Leftrightarrow 5M{I^2}_{\min }\)\( \Leftrightarrow \) M là hình chiếu của I trên (P)

Gọi \(\left( \Delta  \right)\) là đường thẳng đi qua I vuông góc với (P) , ta có phương trình của \(\left( \Delta  \right):\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 1 - t\\z = 1 + 2t\end{array} \right.\).

M là hình chiếu của I lên (P) \( \Rightarrow M \in \left( \Delta  \right) \Rightarrow M\left( { - 1 + 2t;1 - t;1 + 2t} \right)\) .

Lại có \(M \in \left( P \right)\)  

\(\begin{array}{l} \Rightarrow 2\left( { - 1 + 2t} \right) - \left( {1 - t} \right) + 2\left( {1 + 2t} \right) - 8 = 0\\ \Leftrightarrow  - 2 + 4t - 1 + t + 2 + 4t - 8 = 0\\ \Leftrightarrow 9t - 9 = 0 \Leftrightarrow t = 1 \Rightarrow M\left( {1;0;3} \right)\end{array}\)

Khi đó ta có

\(\begin{array}{l}M{I^2} = 4 + 1 + 4 = 9;\;\;\;I{A^2} = 9 + 9 + 9 = 27;\;\;\;I{B^2} = 4 + 4 + 4 = 13\\ \Rightarrow {\left( {2M{A^2} + 3M{B^2}} \right)_{\min }} = 5.9 + 2.27 + 3.12 = 135\end{array}\)

Câu 22 Trắc nghiệm

Trong không gian \(Oxyz\), gọi \(\Delta \) là đường thẳng đi qua \(M\left( {0;0;2} \right)\) và song song với mặt phẳng \(\left( P \right):x + y + z + 3 = 0\) sao cho khoảng cách từ \(A\left( {5;0;0} \right)\) đến đường thẳng \(\Delta \) nhỏ nhất. Một vectơ chỉ phương của đường thẳng \(\Delta \) là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Do \(\Delta \) là đường thẳng đi qua \(M\left( {0;0;2} \right)\) và song song với mặt phẳng \(\left( P \right):x + y + z + 3 = 0\) \( \Rightarrow \Delta  \subset \left( Q \right)\): qua M và song song \(\left( P \right)\).

Phương trình mặt phẳng (Q) là: \(x + y + z - 2 = 0\).

Dựng \(AH \bot \left( Q \right),AK \bot \Delta \). Ta có: \(AK \ge AH\). Do đó, khoảng cách từ \(A\left( {5;0;0} \right)\) đến đường thẳng \(\Delta \) nhỏ nhất và bằng AH khi và chỉ khi K trùng H

Khi đó, đường thẳng \(\Delta \) được xác định là đường thẳng đi qua M và H.

Phương trình đường thẳng AH là \(\left\{ \begin{array}{l}x = 5 + t\\y = t\\z = t\end{array} \right. \Rightarrow \)Giả sử \(H\left( {5 + t;t;t} \right) \Rightarrow 5 + t + t + t - 2 = 0 \Leftrightarrow t =  - 1 \Rightarrow H\left( {4; - 1; - 1} \right)\)

\( \Rightarrow \overrightarrow {MH}  = \left( {4; - 1; - 3} \right) \Rightarrow \Delta \) có 1 VTCP là \(\overrightarrow {{u_3}}  = \left( {4; - 1; - 3} \right)\).

Câu 23 Trắc nghiệm

Trong không gian \(Oxyz\), cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(A'\left( {\sqrt 3 ; - 1;1} \right)\), hai đỉnh \(B,C\) thuộc trục \(Oz\) và \(AA' = 1\) (\(C\) không trùng với \(O\)). Biết véc tơ \(\overrightarrow u  = \left( {a;b;2} \right)\) với \(a,b \in \mathbb{R}\) là một véc tơ chỉ phương của đường thẳng \(A'C\). Tính \(T = {a^2} + {b^2}\).

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Phương trình \(BC \equiv Oz:\left\{ \begin{array}{l}x = 0\\y = 0\\z = t\end{array} \right.\).

Mặt phẳng \(\left( {AMM'A'} \right)\) đi qua \(A'\) và vuông góc với \(BC\) nên \(\left( {AMM'A'} \right)\) đi qua \(A'\left( {\sqrt 3 ; - 1;1} \right)\) và nhận \(\overrightarrow k  = \left( {0;0;1} \right)\) làm VTPT hay \(\left( {AMM'A'} \right):0\left( {x - \sqrt 3 } \right) + 0\left( {y + 1} \right) + 1\left( {z - 1} \right) = 0 \Leftrightarrow z = 1\).

\(M = BC \cap \left( {AMM'A'} \right) \Rightarrow t - 1 = 0 \Leftrightarrow t = 1 \Rightarrow M\left( {0;0;1} \right)\)

Mà \(AA' = 1,A'M = \sqrt {{{\left( {\sqrt 3  - 0} \right)}^2} + {{\left( { - 1 - 0} \right)}^2} + {{\left( {1 - 1} \right)}^2}}  = 2\) \( \Rightarrow AM = \sqrt {A'{M^2} - A'{A^2}}  = \sqrt {{2^2} - {1^2}}  = \sqrt 3 \).

Tam giác \(ABC\) đều có độ dài đường cao \(AM = \dfrac{{BC\sqrt 3 }}{2} = \sqrt 3  \Rightarrow BC = 2\)

Gọi \(B\left( {0;0;m} \right),C\left( {0;0;n} \right)\) với \(n \ne 0\) thì \(BC = 2 \Leftrightarrow \left| {m - n} \right| = 2\) và \(M\left( {0;0;1} \right)\) là trung điểm \(BC \Leftrightarrow \dfrac{{m + n}}{2} = 1 \Leftrightarrow m + n = 2\).

Khi đó \(m = 0,n = 2\) vì \(n \ne 0\) hay \(C\left( {0;0;2} \right)\).

\( \Rightarrow \overrightarrow {A'C}  = \left( { - \sqrt 3 ;1;1} \right)\) hay \(2\overrightarrow {AC'}  = \left( { - 2\sqrt 3 ;2;2} \right)\) là một VTCP của \(A'C\).

Suy ra \(a =  - 2\sqrt 3 ,b = 2 \Rightarrow {a^2} + {b^2} = {\left( { - 2\sqrt 3 } \right)^2} + {2^2} = 16\).

Câu 24 Trắc nghiệm

Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm \(M\left( {2;1;1} \right)\), cắt và vuông góc với đường thẳng \(\Delta :\dfrac{{x - 2}}{{ - 2}} = \dfrac{{y - 8}}{1} = \dfrac{z}{1}\). Tìm tọa độ giao điểm của d và mặt phẳng \(\left( {Oyz} \right)\).

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Gọi \(N = d \cap \Delta \). Giả sử \(N\left( {2 - 2t;\,\,8 + t;\,\,t} \right) \Rightarrow \overrightarrow {MN}  = \left( { - 2t;\,\,7 + t;\,\,t - 1} \right)\).

Đường thẳng \(\Delta :\,\,\dfrac{{x - 2}}{{ - 2}} = \dfrac{{y - 8}}{1} = \dfrac{z}{1}\) có 1 VTCP là \(\overrightarrow {{u_\Delta }}  = \left( { - 2;1;1} \right)\), đường thẳng \(d\) nhận \(\overrightarrow {MN} \) là 1 VTPT.

Do \(d \bot \Delta \) nên \(\overrightarrow {MN} .\overrightarrow {{u_\Delta }}  = 0\).

\(\begin{array}{l} \Leftrightarrow  - 2t.\left( { - 2} \right) + \left( {7 + t} \right).1 + \left( {t - 1} \right).1 = 0\\ \Leftrightarrow 6t + 6 = 0 \Leftrightarrow t =  - 1\\ \Rightarrow \overrightarrow {MN}  = \left( {2;6; - 2} \right)\end{array}\)

\( \Rightarrow \) Đường thẳng \(d\) đi qua \(M\left( {2;1;1} \right)\) và có 1 VTCP \(\overrightarrow {{u_d}}  = \dfrac{1}{2}\overrightarrow {MN}  = \left( {1;3; - 1} \right)\) có phương trình là: \(\left\{ \begin{array}{l}x = 2 + t'\\y = 1 + 3t'\\z = 1 - t'\end{array} \right.\).

Khi đó, giao điểm của \(d\) và mặt phẳng \(\left( {Oyz} \right)\) ứng với \(t'\) thỏa mãn \(x = 2 + t' = 0 \Leftrightarrow t' =  - 2\).

\( \Rightarrow \) Tọa độ giao điểm của \(d\) và mặt phẳng \(\left( {Oyz} \right)\) là: \(\left( {0; - 5;3} \right)\).

Câu 25 Trắc nghiệm

Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,4y - z + 3 = 0\) và hai đường thẳng \({\Delta _1}:\,\,\dfrac{{x - 1}}{1} = \dfrac{{y + 2}}{4} = \dfrac{{z - 2}}{3}\), \({\Delta _2}:\,\,\dfrac{{x + 4}}{5} = \dfrac{{y + 7}}{9} = \dfrac{z}{1}\). Đường thẳng \(d\) vuông góc với mặt phẳng \(\left( P \right)\) và cắt cả hai đường thẳng \({\Delta _1},\,\,{\Delta _2}\) có phương trình là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Gọi \(M = d \cap {\Delta _1} \Rightarrow M\left( {1 + {t_1};\,\, - 2 + 4{t_1};\,\,2 + 3{t_1}} \right)\), \(N = d \cap {\Delta _2} \Rightarrow N\left( { - 4 + 5{t_2};\,\, - 7 + 9{t_2};\,\,{t_2}} \right)\).

\( \Rightarrow \overrightarrow {MN}  = \left( {5{t_2} - {t_1} - 5;\,\,9{t_2} - 4{t_1} - 5;\,\,{t_2} - 3{t_1} - 2} \right)\).

Vì \(d \bot \left( P \right):\,\,4y - z + 3 = 0\) có 1 VTPT là \(\overrightarrow n \left( {0;4; - 1} \right)\) nên \(\overrightarrow {MN} \) và \(\overrightarrow n \) là 2 vectơ cùng phương.

\( \Rightarrow \overrightarrow {MN}  = k\overrightarrow n \,\,\left( {k \ne 0} \right)\)\( \Leftrightarrow \left\{ \begin{array}{l}5{t_2} - {t_1} - 5 = 0\\9{t_2} - 4{t_1} - 5 = 4k\\{t_2} - 3{t_1} - 2 =  - k\end{array} \right.\)  \( \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 5{t_2} - 5\\9{t_2} - 4{t_1} - 5 = 4k\\4{t_2} - 12{t_1} - 8 =  - 4k\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 5{t_2} - 5\\13{t_2} - 16{t_1} - 13 = 0\\{t_2} - 3{t_1} - 2 =  - k\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 5{t_2} - 5\\13{t_2} - 16\left( {5{t_2} - 5} \right) - 13 = 0\\{t_2} - 3{t_1} - 2 =  - k\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 5{t_2} - 5\\ - 67{t_2} + 67 = 0\\{t_2} - 3{t_1} - 2 =  - k\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{t_2} = 1\\{t_1} = 0\\k = 1\end{array} \right.\) .

\( \Rightarrow M\left( {1;\,\, - 2;\,\,2} \right),\,\,N\left( {1;\,\,2;\,\,1} \right)\) \( \Rightarrow \overrightarrow {MN}  = \left( {0;4; - 1} \right)\).

Vậy phương trình đường thẳng \(d\) đi qua \(M\) và có 1 VTCP \(\overrightarrow {MN} \left( {0;4; - 1} \right)\) là: \(\left\{ \begin{array}{l}x = 1\\y =  - 2 + 4t\\z = 2 - t\end{array} \right.\)

Câu 26 Trắc nghiệm

Trong không gian \(Oxyz\), cho đường thẳng  \(d:\dfrac{x}{{ - 2}} = \dfrac{{y - 1}}{1} = \dfrac{z}{1}\) và mặt phẳng \(\left( P \right):2x - y + 2z - 2 = 0.\) Có bao nhiêu điểm \(M\) thuộc d  sao cho M cách đều gốc tọa độ O và mặt phẳng \(\left( P \right)\)?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì \(M \in d:\,\,\dfrac{x}{{ - 2}} = \dfrac{{y - 1}}{1} = \dfrac{z}{1} \Rightarrow \) Gọi \(M\left( { - 2t;\,\,1 + t;\,\,t} \right)\).

Ta có: \(OM = \sqrt {{{\left( { - 2t} \right)}^2} + {{\left( {1 + t} \right)}^2} + {t^2}}  = \sqrt {6{t^2} + 2t + 1} \).

\(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {2\left( { - 2t} \right) - \left( {1 + t} \right) + 2t - 2} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = \dfrac{{\left| { - 3t - 3} \right|}}{3} = \left| {t + 1} \right|\).

Theo bài ra ta có: M cách đều gốc tọa độ O và mặt phẳng \(\left( P \right)\)\( \Leftrightarrow \sqrt {6{t^2} + 2t + 1}  = \left| {t + 1} \right|\).

\(\begin{array}{l} \Leftrightarrow 6{t^2} + 2t + 1 = {t^2} + 2t + 1\\ \Leftrightarrow 5{t^2} = 0 \Leftrightarrow t = 0\end{array}\)

\( \Rightarrow M\left( {0;1;0} \right)\)

Vậy có 1 điểm \(M\)  thỏa mãn yêu cầu bài toán là \(M\left( {0;1;0} \right)\).

Câu 27 Trắc nghiệm

Trong không gian với hệ trục tọa độ \({\mathop{\rm Oxyz}\nolimits} \), cho điểm \(A(4; - 3;5)\) và \(B(2; - 5;1).\)Viết phương trình mặt phẳng \((P)\) đi qua trung điểm \(I\) của đoạn thẳng \(AB\) và vuông góc với đường thẳng \((d):\dfrac{{x + 1}}{3} = \dfrac{{y - 5}}{{ - 2}} = \dfrac{{z + 9}}{{13}}\).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có \(A\left( {4; - 3;5} \right),B\left( {2; - 5;1} \right)\) nên trung điểm của AB là \(I\left( {3; - 4;3} \right)\).

Đường thẳng \(\left( d \right):\dfrac{{x + 1}}{3} = \dfrac{{y - 5}}{{ - 2}} = \dfrac{{z + 9}}{{13}}\) có 1 VTCP là \(\overrightarrow {{u_d}}  = \left( {3; - 2;13} \right)\).

Mặt phẳng \(\left( P \right)\) vuông góc với d  nên mặt phẳng (P) có 1 VTPT \(\overrightarrow {{n_P}}  = \overrightarrow {{u_d}}  = \left( {3; - 2;13} \right)\).

Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến là \(\overrightarrow n  = \left( {3; - 2;13} \right)\) và đi qua \(I\left( {3; - 4;3} \right)\) có phương trình là:

\(3\left( {x - 3} \right) - 2\left( {y + 4} \right) + 13\left( {z - 3} \right) = 0\)\( \Leftrightarrow 3x - 2y + 13z - 56 = 0\).

Câu 28 Trắc nghiệm

Đề thi THPT QG - 2021 - mã 101

Trong không gian \(Oxyz\), cho điểm \(M\left( { - 1;3;2} \right)\) và mặt phẳng \(\left( P \right):x - 2y + 4z + 1 = 0\). Đường thẳng đi qua \(M\) và vuông góc với \(\left( P \right)\) có phương trình là

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi \(d\) là đường thẳng đi qua \(M\left( { - 1;3;2} \right)\) và vuông góc với mặt phẳng \(\left( P \right):\,\,x - 2y + 4z + 1 = 0\).

\( \Rightarrow \overrightarrow {{u_d}}  = \overrightarrow {{n_P}}  = \left( {1; - 2;4} \right)\).

\( \Rightarrow \) Phương trình đường thẳng là: \(\dfrac{{x + 1}}{1} = \dfrac{{y - 3}}{{ - 2}} = \dfrac{{z - 2}}{4}\).

Câu 29 Trắc nghiệm

Trong không gian \(Oxyz,\) gọi \(d'\) là hình chiếu vuông góc của đường thẳng \(d:\,\,\left\{ \begin{array}{l}x = t\\y = t\\z = t\end{array} \right.\) trên mặt phẳng \(\left( {Oxy} \right)\). Phương trình tham số của đường thẳng \(d'\) là

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Bước 1:

Đường thẳng \(d:\,\,\left\{ \begin{array}{l}x = t\\y = t\\z = t\end{array} \right.\) đi qua hai điểm \(O\left( {0;0;0} \right)\) và \(A\left( {1;1;1} \right)\).

Bước 2:

Hình chiếu của điểm \(O,\,\,A\) trên \(\left( {Oxy} \right)\) lần lượt là \(O\left( {0;0;0} \right)\) và \(A'\left( {1;1;0} \right)\).

Bước 3:

Khi đó hình chiếu của \(d\) là đường thẳng \(d'\) đi qua \(O,\,\,A'\), nhận \(\overrightarrow {OA'}  = \left( {1;1;0} \right)\) là 1 VTCP nên có phương trình tham số là \(\left\{ \begin{array}{l}x = t\\y = t\\z = 0\end{array} \right.\).

Câu 30 Tự luận

Trong không gian \(Oxyz,\) gọi \(M'\) là điểm đối xứng của điểm \(M\left( {2;0;1} \right)\) qua đường thẳng \(\Delta :\,\,\,\dfrac{x}{1} = \dfrac{{y + 2}}{2} = \dfrac{{z - 1}}{1}\). Tính khoảng cách từ điểm \(M'\) đến mặt phẳng \(\left( {Oxy} \right).\)

Đáp án 

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án 

Bước 1: Viết phương trình mặt phẳng \(\left( P \right)\) là mặt phẳng đi qua \(M\) và vuông góc với \(\Delta \).

Ta có: \(\Delta :\,\,\,\dfrac{x}{1} = \dfrac{{y + 2}}{2} = \dfrac{{z - 1}}{1}\) và \(M\left( {2;\,\,0;\,\,1} \right)\)

Gọi \(\left( P \right)\) là mặt phẳng đi qua \(M\) và vuông góc với \(\Delta \) \( \Rightarrow \overrightarrow {{n_P}}  = \overrightarrow {{u_\Delta }}  = \left( {1;\,\,2;\,\,1} \right).\)

\( \Rightarrow \left( P \right):\,\,\,x - 2 + 2y + z - 1 = 0\) \( \Leftrightarrow x + 2y + z - 3 = 0.\)

Bước 2:  Tìm tọa độ điểm \(H = \left( P \right) \cap \Delta \), khi đó \(H\) là trung điểm của \(MM'\), từ đó tìm tọa độ điểm \(M'\).

Gọi \(H\) là giao điểm của \(\left( P \right)\) và \(\Delta \)

\( \Rightarrow \) Toạ độ của \(H\) là nghiệm của hệ phương trình:

\(\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}\dfrac{x}{1} = \dfrac{{y + 2}}{2} = \dfrac{{z - 1}}{1}\\x + 2y + z - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = t\\y =  - 2 + 2t\\z = 1 + t\\x + 2y + z - 3 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = t\\y =  - 2 + 2t\\z = 1 + t\\t - 4 + 4t + 1 + t - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = t\\y =  - 2 + 2t\\z = 1 + t\\t = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 0\\z = 2\end{array} \right. \Rightarrow H\left( {1;\,\,0;\,\,2} \right)\end{array}\)

Ta có: \(M'\) là điểm đối xứng của \(M\) qua \(\Delta \) \( \Rightarrow H\) là trung điểm của \(MM'\) \( \Rightarrow M'\left( {0;\,\,0;\,\,3} \right)\)

Bước 3: Khoảng cách từ \(M\left( {{x_0};{y_0}} \right)\) đến mặt phẳng \(\left( P \right)\)

Ta có: \(\left( {Oxy} \right):\,\,\,z = 0.\)

\( \Rightarrow d\left( {M;\,\,\left( {Oxy} \right)} \right) = \dfrac{{\left| 3 \right|}}{1} = 3.\)

Câu 31 Tự luận

Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\,\,\left\{ \begin{array}{l}x = 2 - 2t\\y = 0\\z = t\end{array} \right.\). Gọi \(d'\) là đường thẳng đối xứng với \(d\) qua mặt phẳng \((Oxy)\). Biết phương trình đó có dạng: \( d':\,\,\left\{ \begin{array}{l}x = a+ bt\\y = c\\z = t\end{array} \right.\)

Tính $a+b+c$.

Đáp án 

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án 

Bước 1: Gọi \(A = d \cap Oxy \Rightarrow \) Tìm tọa độ điểm \(A\).

Mặt phẳng \(Oxy\) có phương trình \(z = 0\).

Gọi \(A = d \cap Oxy \Rightarrow \) Tọa độ của \(A\) là nghiệm của hệ phương trình

\(\left\{ \begin{array}{l}x = 2 - 2t\\y = 0\\z = t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 0\\z = 0\end{array} \right.\\\Rightarrow A\left( {2;0;0} \right)\)

Bước 2: Lấy điểm \(B\) bất kì thuộc \(d\). Gọi \(B'\) là điểm đối xứng với \(B\) qua \(Oxy \Rightarrow \) Tìm tọa độ điểm \(B'\).

Lấy \(B\left( {0;0;1} \right) \in d\). Gọi \(B'\) là điểm đối xứng với \(B\) qua \(Oxy \Rightarrow B'\left( {0;0; - 1} \right)\).

Bước 3: \(d'\) là đường thẳng đối xứng với \(d\) qua mặt phẳng \(Oxy\) \( \Rightarrow d'\) đi qua \(A,\,\,B'\). Viết phương trình đường thẳng \(d'\).

\(d'\) là đường thẳng đối xứng với \(d\) qua mặt phẳng \(Oxy\) \( \Rightarrow d'\) đi qua \(A,\,\,B'\).

\( \Rightarrow d'\) nhận \(\overrightarrow {AB'}  = \left( { - 2;0; - 1} \right)//\left( {2;0;1} \right)\) là 1 VTCP \( \Rightarrow d':\,\,\left\{ \begin{array}{l}x = 2 + 2t\\y = 0\\z = t\end{array} \right.\)

=>$a=2, b=2, c=0$

=>$a+b+c=2+2+0=4$

Câu 32 Tự luận

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,2x - 2y - z + 7 = 0\) và điểm \(A\left( {1;1; - 2} \right)\). Điểm \(H\left( {a;b;c} \right)\) là hình chiếu vuông góc của \(A\) trên \(\left( P \right)\). Tổng \(a + b + c\) bằng:

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

Bước 1: Viết phương trình đường thẳng \(\Delta \) đi qua \(A\) và vuông góc với \(\left( P \right)\).

Gọi \(\Delta \) là đường thẳng đi qua \(A\) và vuông góc với \(\left( P \right)\), phương trình đường thẳng \(\Delta \) là:

\(\left\{ \begin{array}{l}x = 1 + 2t\\y = 1 - 2t\\z =  - 2 - t\end{array} \right.\,\,\,\left( \Delta  \right)\)

Bước 2: Tìm \(H = \Delta  \cap \left( P \right)\).

Vì \(H\) là hình chiếu vuông góc của \(A\) trên \(\left( P \right)\) nên \(H = \Delta  \cap \left( P \right)\) \( \Rightarrow \) Tọa độ điểm \(H\) là nghiệm của hệ phương trình

\(\begin{array}{l}\left\{ \begin{array}{l}x = 1 + 2t\\y = 1 - 2t\\z =  - 2 - t\\2x - 2y - z + 7 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 + 2t\\y = 1 - 2t\\z =  - 2 - t\\2 + 4t - 2 + 4t + 2 + t + 7 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 1 + 2t\\y = 1 - 2t\\z =  - 2 - t\\9t + 9 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t =  - 1\\x =  - 1\\y = 3\\z =  - 1\end{array} \right. \Rightarrow H\left( { - 1;3; - 1} \right)\end{array}\)

Bước 3: Tìm \(a,\,\,b,\,\,c\) và tính tổng.

\( \Rightarrow a =  - 1,\,\,b = 3,\,\,c =  - 1\).

Vậy \(a + b + c =  - 1 + 3 - 1 = 1\).

Câu 33 Tự luận

Trong không gian với hệ tọa độ Oxyz, điểm $A’(a;b;c)$ đối xứng với điểm \(A\left( { - 1;0;3} \right)\) qua mặt phẳng \(\left( P \right):x + 3y - 2z - 7 = 0\). Tìm $a+b+c$

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

\(A'\left( {a;b;c} \right)\) là điểm đối xứng với điểm \(A\left( { - 1;0;3} \right)\) qua mặt phẳng \(\left( P \right):x + 3y - 2z - 7 = 0\).

Khi đó, ta có: \(\left\{ \begin{array}{l}\overrightarrow {AA'} //\overrightarrow {{n_{\left( P \right)}}} \\I \in \left( P \right)\end{array} \right.\), với I là trung điểm của AA’

\( \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{a + 1}}{1} = \dfrac{{b - 0}}{3} = \dfrac{{c - 3}}{{ - 2}}\\\left( {\dfrac{{a - 1}}{2}} \right) + 3.\dfrac{b}{2} - 2.\dfrac{{c + 3}}{2} - 7 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{a + 1}}{1} = \dfrac{b}{3} = \dfrac{{c - 3}}{{ - 2}}\\a + 3b - 2c = 21\end{array} \right.\)

\( \Rightarrow \dfrac{{a + 1}}{1} = \dfrac{b}{3} = \dfrac{{c - 3}}{{ - 2}} = \dfrac{{a + 1 + 3b - 2c + 6}}{{1 + 9 + 4}} = \dfrac{{21 + 1 + 6}}{{14}} = 2\)\( \Rightarrow \left\{ \begin{array}{l}a = 1\\b = 6\\c =  - 1\end{array} \right.\)\( \Rightarrow A'\left( {1;6; - 1} \right)\)

Vậy $a+b+c=1+6+(-1)=6$