Một xe du lịch khởi hành từ A để đến B. Nửa giờ sau, một xe tải xuất phát từ B để về A. Xe tải đi được $1$ giờ thì gặp xe du lịch. Tính vận tốc của mỗi xe, biết rằng xe du lịch có vận tốc lớn hơn xe tải là $10km/h$ và quãng đường $AB$ dài $90km.$
Gọi vận tốc của xe tải là x, đơn vị km/h, điều kiện: \(x > 0\) . Khi đó ta có:
Vận tốc xe du lịch là \(x + 10\left( {km/h} \right)\)
Thời gian xe du lịch đi từ A đến lúc gặp xe tải là: \(0,5 + 1 = 1,5\left( h \right)\)
Quãng đường xe du lịch và xe tải đi được đến lúc gặp nhau lần lượt là: \(\left( {x + 10} \right).1,5\left( {km} \right)\) và \(x.1\left( {km} \right)\) .
Vì hai xe đi ngược chiều nên quãng đường AB là tổng quãng đường mà hai xe đi được. Ta có phương trình:
\(\begin{array}{l}\left( {x + 10} \right).1,5 + x.1 = 90\\ \Leftrightarrow 2,5x = 75\\ \Leftrightarrow x = 30(tm)\end{array}\)
Vậy vận tốc của xe du lịch và xe tải lần lượt là $40{\rm{ }}\left( {km/h} \right)$ và $30{\rm{ }}\left( {km/h} \right).$
Một công việc được giao cho hai người. Người thứ nhất có thể làm xong công việc một mình trong $24$ phút. Lúc đầu, người thứ nhất làm một mình và sau \(\dfrac{{26}}{3}\) phút người thứ hai cùng làm. Hai người làm chung trong \(\dfrac{{22}}{3}\) phút thì hoàn thành công việc. Hỏi nếu làm một mình thì người thứ hai cần bao lâu để hoàn thành công việc.
Gọi thời gian làm một mình xong việc của người thứ hai là $x$ (phút), điều kiện:\(x > \dfrac{{22}}{3}\) . Biểu thị công việc bằng $1$ ta có:
Năng suất của người thứ nhất và thứ hai lần lượt là \(\dfrac{1}{{24}}\) (công việc/phút) và \(\dfrac{1}{x}\) (công việc/phút).
Năng suất làm chung của hai người là \(\dfrac{1}{{24}} + \dfrac{1}{x}\) (công việc/phút)
Khối lượng công việc người thứ nhất làm một mình trong $\dfrac{{26}}{3}$ phút là \(\dfrac{1}{{24}}.\dfrac{{26}}{3} = \dfrac{{13}}{{36}}\) (công việc)
Khối lượng công việc hai người làm chung trong \(\dfrac{{22}}{3}\) phút là \(\dfrac{{22}}{3}.\left( {\dfrac{1}{{24}} + \dfrac{1}{x}} \right)\) (công việc)
Theo bài ra ta có phương trình:
\(\begin{array}{l}\,\,\,\,\,\,\,\,\dfrac{{13}}{{36}} + \dfrac{{22}}{3}.\left( {\dfrac{1}{{24}} + \dfrac{1}{x}} \right) = 1 \Leftrightarrow \dfrac{{22}}{3}.\left( {\dfrac{1}{{24}} + \dfrac{1}{x}} \right) = \dfrac{{23}}{{36}}\\ \Leftrightarrow \dfrac{1}{{24}} + \dfrac{1}{x} = \dfrac{{23}}{{264}} \Leftrightarrow \dfrac{1}{x} = \dfrac{1}{{22}} \Leftrightarrow x = 22(tm)\end{array}\)
Vậy nếu làm riêng người thứ hai cần làm trong $22$ phút thì xong công việc.
Tổng các nghiệm của phương trình: \(\dfrac{1}{{{x^2} + 4x + 3}} + \dfrac{1}{{{x^2} + 8x + 15}} + \dfrac{1}{{{x^2} + 12x + 35}} + \dfrac{1}{{{x^2} + 16x + 63}} = \dfrac{1}{5}\) là
Phân tích các mẫu thành nhân tử sau đó nhân cả 2 vế của phương trình với 2 ta được:
\(\begin{array}{l}pt \Leftrightarrow \dfrac{1}{{\left( {x + 1} \right)\left( {x + 3} \right)}} + \dfrac{1}{{\left( {x + 3} \right)\left( {x + 5} \right)}} + \dfrac{1}{{\left( {x + 5} \right)\left( {x + 7} \right)}} + \dfrac{1}{{\left( {x + 7} \right)\left( {x + 9} \right)}} = \dfrac{1}{5}\\ \Leftrightarrow \dfrac{2}{{\left( {x + 1} \right)\left( {x + 3} \right)}} + \dfrac{2}{{\left( {x + 3} \right)\left( {x + 5} \right)}} + \dfrac{2}{{\left( {x + 5} \right)\left( {x + 7} \right)}} + \dfrac{2}{{\left( {x + 7} \right)\left( {x + 9} \right)}} = \dfrac{2}{5}\end{array}\)
ĐKXĐ: $x \ne \left\{ { - 1; - 3; - 5; - 7; - 9} \right\}$ .
Khi đó:
\(\begin{array}{l}pt \Leftrightarrow \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}} + \dfrac{1}{{x + 3}} - \dfrac{1}{{x + 5}} + \dfrac{1}{{x + 5}} - \dfrac{1}{{x + 7}} + \dfrac{1}{{x + 7}} - \dfrac{1}{{x + 9}} = \dfrac{2}{5}\\ \Leftrightarrow \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 9}} = \dfrac{2}{5}\\ \Leftrightarrow \dfrac{{1\left( {x + 9} \right) - 1\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x + 9} \right)}} = \dfrac{{2\left( {x + 1} \right)\left( {x + 9} \right)}}{{5\left( {x + 1} \right)\left( {x + 9} \right)}}\\ \Rightarrow 5\left[ {x + 9 - \left( {x + 1} \right)} \right] = 2\left( {x + 1} \right)\left( {x + 9} \right)\\ \Leftrightarrow 5\left( {x + 9 - x - 1} \right) = 2{x^2} + 20x + 18\\ \Leftrightarrow 2{x^2} + 20x - 22 = 0 \Leftrightarrow {x^2} + 10x - 11 = 0\\ \Leftrightarrow {x^2} - x + 11x - 11 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {x + 11} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x + 11 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 11\end{array} \right.(tm)\\ \Rightarrow S = \left\{ {1; - 11} \right\}\end{array}\)
Vậy tổng các nghiệm của phương trình là \(1 + \left( { - 11} \right) = - 10.\)
Giải phương trình: \(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} + 48\dfrac{{{x^2} - 4}}{{{x^2} - 1}} = 0\) ta được các nghiệm là \({x_1};{x_2}\) với \({x_1} < {x_2}\) . Tính \(3{x_1} - {x_2}.\)
ĐKXĐ: \(x \ne \pm 1\) .
\(Pt \Leftrightarrow 20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} + 48.\dfrac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} = 0\)
Với \(x = - 2\) ta có phương trình \( \Leftrightarrow 20.{\left( {\dfrac{{ - 4}}{{ - 1}}} \right)^2} = 0\) vô lý \( \Rightarrow x = - 2\) không là nghiệm của phương trình.
Lại có với \(x \ne 1;\,\,x \ne - 2\) thì \({\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} \ne 0,\) ta chia hai vế của phương trình cho \({\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2}\), ta được:
\(pt \Leftrightarrow 20{\left[ {\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}}} \right]^2} + 48\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} - 5 = 0\)
Đặt \(t = \dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}}\) , ta có
\(\begin{array}{l}pt \Leftrightarrow 20{t^2} + 48t - 5 = 0 \Leftrightarrow 20{t^2} + 50t - 2t - 5 = 0\\ \Leftrightarrow 10t\left( {2t + 5} \right) - \left( {2t + 5} \right) = 0 \Leftrightarrow \left( {2t + 5} \right)\left( {10t - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}2t + 5 = 0\\10t - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = - \dfrac{5}{2}\\t = \dfrac{1}{{10}}\end{array} \right..\end{array}\)
Với \(t = - \dfrac{5}{2}\) ta có:
$\begin{array}{l}\,\,\,\,\,\,\,\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} = - \dfrac{5}{2}\\ \Rightarrow 2\left( {{x^2} - 3x + 2} \right) = - 5\left( {{x^2} + 3x + 2} \right)\\ \Leftrightarrow 2{x^2} - 6x + 4 = - 5{x^2} - 15x - 10\\ \Leftrightarrow 7{x^2} + 9x + 14 = 0\\ \Leftrightarrow 7\left( {{x^2} + 2.\dfrac{9}{{14}}x + \dfrac{{81}}{{196}}} \right) - \dfrac{{81}}{{28}} + 14 = 0\\ \Leftrightarrow 7{\left( {x + \dfrac{9}{{14}}} \right)^2} + \dfrac{{311}}{{28}} = 0\,\,\,\left( {VN} \right)\end{array}$
Với \(t = \dfrac{1}{{10}}\) ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,\,\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} = \dfrac{1}{{10}}\\ \Rightarrow 10\left( {{x^2} - 3x + 2} \right) = {x^2} + 3x + 2\\ \Leftrightarrow 9{x^2} - 33x + 18 = 0\\ \Leftrightarrow 3{x^2} - 11x + 6 = 0\\ \Leftrightarrow \left( {3x - 2} \right)\left( {x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}3x - 2 = 0\\x - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{2}{3}\\x = 3\end{array} \right.(tm)\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ {3;\,\,\dfrac{2}{3}} \right\}\)
Từ giả thiết suy ra \({x_1} = \dfrac{2}{3};{x_2} = 3 \Rightarrow 3{x_1} - {x_2} = - 1.\)
Tích các nghiệm của phương trình: \(\left( {{x^2} - 3x + 3} \right)\left( {{x^2} - 2x + 3} \right) = 2{x^2}\) là
Nhận thấy \(x = 0\) không là nghiệm của phương trình nên chia hai vế của phương trình cho \({x^2} \ne 0\) ta được:
\(\dfrac{{{x^2} - 3x + 3}}{x}.\dfrac{{{x^2} - 2x + 3}}{x} = 2 \Leftrightarrow \left( {x + \dfrac{3}{x} - 3} \right)\left( {x + \dfrac{3}{x} - 2} \right) = 2\)
Đặt \(t = x + \dfrac{3}{x} - 3\) , ta có:
\(\begin{array}{l}pt \Leftrightarrow t\left( {t + 1} \right) = 2 \Leftrightarrow {t^2} + t - 2 = 0\\\,\,\,\,\,\,\, \Leftrightarrow \left( {t - 1} \right)\left( {t + 2} \right) = 0\\\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l}t - 1 = 0\\t + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 2\end{array} \right..\end{array}\)
Với \(t = 1 \Rightarrow x + \dfrac{3}{x} - 3 = 1 \Leftrightarrow {x^2} - 4x + 3 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)
Với \(t = - 2 \Rightarrow x + \dfrac{3}{x} - 3 = - 2 \Leftrightarrow {x^2} - x + 3 = 0 \Leftrightarrow {\left( {x - \dfrac{1}{2}} \right)^2} + \dfrac{{11}}{4} = 0\) vô nghiệm
Vậy phương trình có tập nghiệm là \(S = \left\{ {1;3} \right\}\)
Tích các nghiệm của phương trình là \(1.3 = 3.\)
Cho phương trình: \(\left( {4{m^2} - 9} \right)x = 2{m^2} + m - 3\) . Tìm m để phương trình có vô số nghiệm
Phương trình
\(\begin{array}{l}\,\,\,\,\,\,\,\left( {4{m^2} - 9} \right)x = 2{m^2} + m - 3\\ \Leftrightarrow \left( {4{m^2} - 9} \right)x = 2{m^2} - 2m + 3m - 3\\ \Leftrightarrow \left( {2m - 3} \right)\left( {2m + 3} \right)x = 2m\left( {m - 1} \right) + 3\left( {m - 1} \right)\\ \Leftrightarrow \left( {2m - 3} \right)\left( {2m + 3} \right)x = \left( {m - 1} \right)\left( {2m + 3} \right)\end{array}\)
Phương trình có vô số nghiệm khi \(\left\{ \begin{array}{l}\left( {2m - 3} \right)\left( {2m + 3} \right) = 0\\\left( {m - 1} \right)\left( {2m + 3} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}2m - 3 = 0\\2m + 3 = 0\end{array} \right.\\\left[ \begin{array}{l}m - 1 = 0\\2m + 3 = 0\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = \dfrac{3}{2}\\m = - \dfrac{3}{2}\end{array} \right.\\\left[ \begin{array}{l}m = 1\\m = - \dfrac{3}{2}\end{array} \right.\end{array} \right. \Leftrightarrow m = - \dfrac{3}{2}\)
Vậy phương trình có vô số nghiệm khi \(m = - \dfrac{3}{2}.\)