Quy đồng mẫu thức các phân thức sau \(\dfrac{{x - y}}{{2{x^2} - 4xy + 2{y^2}}};\dfrac{{x + y}}{{2{x^2} + 4xy + 2{y^2}}};\dfrac{{{x^2} - xy + {y^2}}}{{\left( {{x^3} + {y^3}} \right)\left( {{y^2} - {x^2}} \right)}}\) ta được các phân thức lần lượt là:
Ta có: \(\dfrac{{x - y}}{{2{x^2} - 4xy + 2{y^2}}} = \dfrac{{x - y}}{{2\left( {{x^2} - 2xy + {y^2}} \right)}} = \dfrac{{x - y}}{{2{{\left( {x - y} \right)}^2}}} = \dfrac{1}{{2\left( {x - y} \right)}};\)
\(\dfrac{{x + y}}{{2{x^2} + 4xy + 2{y^2}}} = \dfrac{{x + y}}{{2\left( {{x^2} + 2xy + {y^2}} \right)}} = \dfrac{{x + y}}{{2{{\left( {x + y} \right)}^2}}} = \dfrac{1}{{2\left( {x + y} \right)}};\) \(\dfrac{{{x^2} - xy + {y^2}}}{{\left( {{x^3} + {y^3}} \right)\left( {{y^2} - {x^2}} \right)}} = \dfrac{{{x^2} - xy + {y^2}}}{{\left( {x - y} \right)\left( {{x^2} - xy + {y^2}} \right)\left[ { - \left( {x - y} \right)\left( {x + y} \right)} \right]}}\) \( = \dfrac{{ - 1}}{{{{\left( {x - y} \right)}^2}\left( {x + y} \right)}}\).
Ta đem quy đồng các phân số vừa rút gọn được là \(\dfrac{1}{{2\left( {x - y} \right)}};\dfrac{1}{{2\left( {x + y} \right)}};\dfrac{{ - 1}}{{{{\left( {x - y} \right)}^2}\left( {x + y} \right)}}\) với mẫu thức chung là \(2{\left( {x - y} \right)^2}\left( {x + y} \right)\) ta được:
* \(\dfrac{1}{{2\left( {x - y} \right)}} = \dfrac{{\left( {x - y} \right)\left( {x + y} \right)}}{{2\left( {x - y} \right)\left( {x - y} \right)\left( {x + y} \right)}} = \dfrac{{{x^2} - {y^2}}}{{2{{\left( {x - y} \right)}^2}\left( {x + y} \right)}}\)
* \(\dfrac{1}{{2\left( {x + y} \right)}} = \dfrac{{{{\left( {x - y} \right)}^2}}}{{2\left( {x + y} \right){{\left( {x - y} \right)}^2}}} = \dfrac{{{x^2} - 2xy + {y^2}}}{{2{{\left( {x - y} \right)}^2}\left( {x + y} \right)}}\)
* \(\dfrac{{ - 1}}{{{{\left( {x - y} \right)}^2}\left( {x + y} \right)}} = \dfrac{{ - 2}}{{2{{\left( {x - y} \right)}^2}\left( {x + y} \right)}}\)
Vậy các phân thức sau khi rút gọn và quy đồng lần lượt là \(\dfrac{{{x^2} - {y^2}}}{{2{{\left( {x - y} \right)}^2}\left( {x + y} \right)}};\dfrac{{{x^2} - 2xy + {y^2}}}{{2{{\left( {x - y} \right)}^2}\left( {x + y} \right)}};\dfrac{{ - 2}}{{2{{\left( {x - y} \right)}^2}\left( {x + y} \right)}}\).