Trường hợp đồng dạng thứ ba

Câu 41 Trắc nghiệm

Cho $\Delta ABC$ cân tại $A$ , có $BC = 2a$ , $M$  là trung điểm $BC$ , lấy $D,E$  thuộc $AB,AC$ sao cho \(\widehat {DME} = \widehat {ABC}\).

Tích $BD.CE$ bằng

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

+ Ta có: \(\widehat {DMC} = \widehat {DME} + \widehat {EMC}\)

Mặt khác: \(\widehat {DMC} = \widehat {ABC} + \widehat {BDM}\) (góc ngoài tam giác)

Mà: \(\widehat {DME} = \widehat {ABC}\)(gt) nên \(\widehat {BDM} = \widehat {EMC}\)

+ Ta có: \(\widehat {ABC} = \widehat {ACB}\) ($\Delta ABC$ cân tại $A$ ) và  \(\widehat {BDM} = \widehat {EMC}\) (chứng minh trên)

\( \Rightarrow \)\(\Delta BDM\backsim\Delta CME\;(g - g)\)

\( \Rightarrow \dfrac{{BD}}{{CM}} = \dfrac{{BM}}{{CE}} \Rightarrow BD.CE = CM.BM\)

Lại có M là trung điểm của BC và BC = 2a \( \Rightarrow \)BM = MC = a

\( \Rightarrow BD.CE = {a^2}\) không đổi.

Câu 42 Trắc nghiệm

Cho $\Delta ABC$ cân tại $A$ , có $BC = 2a$ , $M$  là trung điểm $BC$ , lấy $D,E$  thuộc $AB,AC$ sao cho \(\widehat {DME} = \widehat {ABC}\).

Góc \(BDM\) bằng với góc nào dưới đây?          

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: \(\Delta BDM\backsim\Delta CME\;\) (chứng minh trên)

\( \Rightarrow \dfrac{{DM}}{{ME}} = \dfrac{{BD}}{{CM}} = \dfrac{{BD}}{{BM}}\) (do CM = BM (gt))

\( \Rightarrow \dfrac{{BD}}{{DM}} = \dfrac{{BM}}{{ME}}\)

Xét \(\Delta BDM\) và \(\Delta MDE\) ta có:

\(\dfrac{{BD}}{{DM}} = \dfrac{{BM}}{{ME}}\)

\(\widehat {DME} = \widehat {ABC}\)  (gt)

\( \Rightarrow \Delta BDM\backsim\Delta MDE\;(c - g - c)\)

\( \Rightarrow \widehat {BDM} = \widehat {MDE}\) (hai góc tương ứng)