Câu hỏi:
2 năm trước

Cho $\Delta ABC$ cân tại $A$ , có $BC = 2a$ , $M$  là trung điểm $BC$ , lấy $D,E$  thuộc $AB,AC$ sao cho \(\widehat {DME} = \widehat {ABC}\).

Góc \(BDM\) bằng với góc nào dưới đây?          

Trả lời bởi giáo viên

Đáp án đúng: b

Ta có: \(\Delta BDM\backsim\Delta CME\;\) (chứng minh trên)

\( \Rightarrow \dfrac{{DM}}{{ME}} = \dfrac{{BD}}{{CM}} = \dfrac{{BD}}{{BM}}\) (do CM = BM (gt))

\( \Rightarrow \dfrac{{BD}}{{DM}} = \dfrac{{BM}}{{ME}}\)

Xét \(\Delta BDM\) và \(\Delta MDE\) ta có:

\(\dfrac{{BD}}{{DM}} = \dfrac{{BM}}{{ME}}\)

\(\widehat {DME} = \widehat {ABC}\)  (gt)

\( \Rightarrow \Delta BDM\backsim\Delta MDE\;(c - g - c)\)

\( \Rightarrow \widehat {BDM} = \widehat {MDE}\) (hai góc tương ứng)

Hướng dẫn giải:

Từ hai tam giác đồng dạng đã biết suy ra tỉ lệ cạnh thích hợp để chứng minh \(\Delta BDM\backsim\Delta MDE\;(c - g - c)\)

để suy ra hai góc bằng nhau.

Giải thích thêm:

- Học sinh cần viết  các cặp tam giác đồng dạng theo đúng thứ tự đỉnh tương ứng của $2$  tam giác.

 

Câu hỏi khác