Khoảng cách từ giữa đường thẳng, mặt phẳng song song

Kỳ thi ĐGTD ĐH Bách Khoa

Đổi lựa chọn

Câu 1 Trắc nghiệm

Cho hình chóp $S.ABCD$ có $SA \bot \left( {ABCD} \right)$, đáy $ABCD$ là hình thang vuông tại \(A,B\) có $AB = a$. Gọi $I$ và $J$ lần lượt là trung điểm của $AB$ và $CD$. Tính khoảng cách giữa đường thẳng $IJ$ và $\left( {SAD} \right)$. 

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot IA\), mà \(IA \bot AD\) nên \(IA \bot \left( {SAD} \right)\)

Lại có $IJ$// $AD$ nên $IJ$// $\left( {SAD} \right)$

$ \Rightarrow d\left( {IJ;\left( {SAD} \right)} \right) = d\left( {I;\left( {SAD} \right)} \right) = IA = \dfrac{a}{2}$

Câu 2 Trắc nghiệm

Cho hình thang vuông $ABCD$ vuông ở $A$ và $D$, $AD = 2a.$ Trên đường thẳng vuông góc với $\left( {ABCD} \right)$ tại $D$  lấy điểm $S$ với $SD = a\sqrt 2 .$ Tính khỏang cách giữa đường thẳng $DC$ và $\left( {SAB} \right)$.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Vì $DC$// $AB$ nên $DC$// $\left( {SAB} \right)$

$ \Rightarrow d\left( {DC;\left( {SAB} \right)} \right) = d\left( {D;\left( {SAB} \right)} \right)$.

Kẻ $DH \bot SA$, do $AB \bot AD$, $AB \bot SD$ nên $AB \bot \left( {SAD} \right) \Rightarrow DH \bot AB$ suy ra $d\left( {D;\left( {SAB} \right)} \right) = DH$.

Trong tam giác vuông $SAD$ ta có:

$\begin{array}{l}
DH.SA = DS.DA\\
\Leftrightarrow DH = \frac{{DS.DA}}{{SA}} = \frac{{DS.DA}}{{\sqrt {S{D^2} + D{A^2}} }}\\
= \frac{{a\sqrt 2 .2a}}{{\sqrt {{{\left( {a\sqrt 2 } \right)}^2} + {{\left( {2a} \right)}^2}} }} = \frac{{2a\sqrt 3 }}{3} = \frac{{2a}}{{\sqrt 3 }}\\
\Rightarrow d\left( {DC,\left( {SAB} \right)} \right) = \frac{{2a}}{{\sqrt 3 }}
\end{array}$

Câu 3 Trắc nghiệm

Cho hình chóp $O.ABC$ có đường cao $OH = \dfrac{{2a}}{{\sqrt 3 }}$. Gọi $M$ và $N$ lần lượt là trung điểm của $OA$ và $OB.$ Khoảng cách giữa đường thẳng $MN$ và $\left( {ABC} \right)$ bằng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì $M$ và $N$ lần lượt là trung điểm của $OA$ và $OB$ nên $MN//AB \Rightarrow MN//\left( {ABC} \right)$.

Ta có: \(d\left( {MN;\left( {ABC} \right)} \right) = d\left( {M;\left( {ABC} \right)} \right) \)

Vì \(OM\) cắt \((ABC)\) tại \(A\) và \(OA=2MA\) nên \(d\left( {M;\left( {ABC} \right)} \right)= \dfrac{1}{2}OH = \dfrac{{a\sqrt 3 }}{3}\).

Câu 4 Trắc nghiệm

Cho hình chóp tứ giác đều $S.ABCD$ có $AB = SA = 2a.$ Khoảng cách từ đường thẳng $AB$ đến $\left( {SCD} \right)$ bằng bao nhiêu?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Gọi \(I,M\) lần lượt là trung điểm cạnh \(AB\) và \(CD\) thì \(\left\{ \begin{array}{l}CD \bot IM\\CD \bot SM\end{array} \right. \Rightarrow CD \bot (SIM)\)

Vẽ \(IH \bot SM\) tại \(H \in SM\)thì \(IH \bot (SCD)\)

Mà \(AB//CD \subset \left( {SCD} \right)\Rightarrow AB// (SCD)\)

\( \Rightarrow d\left( {AB,(SCD)} \right) = d\left( {I,(SCD)} \right) = IH = \dfrac{{SO.IM}}{{SM}}\)

\(\Delta SAB\) đều cạnh \(2a \Rightarrow SI = a\sqrt 3  \Rightarrow SM = a\sqrt 3 \)

Và \(OM = \dfrac{1}{2}IM = a \Rightarrow SO = \sqrt {S{M^2} - O{M^2}}  = a\sqrt 2 \)

Cuối cùng \(d\left( {AB,(SCD)} \right) = \dfrac{{SO.IM}}{{SM}} = \dfrac{{a\sqrt 2 .2a}}{{a\sqrt 3 }} = \dfrac{{2a\sqrt 6 }}{3}\)

Câu 5 Trắc nghiệm

Cho hình lăng trụ tứ giác đều $ABCD.A'B'C'D'$ có cạnh đáy bằng $a$. Gọi $M$, $N$, $P$ lần lượt là trung điểm của $AB$, $BC$, $A'B'$. Tính khoảng cách giữa hai mặt phẳng $\left( {MNP} \right)$ và $\left( {ACC'} \right)$.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có: $MM//AC,MP//A'A \Rightarrow \left( {MNP} \right)//\left( {ACC'} \right)$

$ \Rightarrow d\left( {\left( {MNP} \right);\left( {ACC'} \right)} \right) = d\left( {P;\left( {ACC'} \right)} \right) = \dfrac{1}{2}d\left( {B',\left( {ACC'} \right)} \right)$

Lại có:

\(B'O' \bot A'C',B'O' \bot CC' \Rightarrow B'O' \bot \left( {ACC'} \right)\) \( \Rightarrow d\left( {B',\left( {ACC'} \right)} \right) = B'O' = \dfrac{1}{2}B'D' = \dfrac{{a\sqrt 2 }}{2}\)

Vậy \(d\left( {P,\left( {ACC'} \right)} \right) = \dfrac{1}{2}d\left( {B',\left( {ACC'} \right)} \right) = \dfrac{{a\sqrt 2 }}{4}\)

Câu 6 Trắc nghiệm

Cho hình lăng trụ tam giác $ABC.A'B'C'$ có các cạnh bên hợp với đáy những góc bằng $60^\circ $, đáy $ABC$ là tam giác đều cạnh $a$ và $A'$ cách đều $A$, $B$, $C$. Tính khoảng cách giữa hai đáy của hình lăng trụ.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \(\left( {ABC} \right)//\left( {A'B'C'} \right) \Rightarrow d\left( {\left( {ABC} \right),\left( {A'B'C'} \right)} \right) = d\left( {A',\left( {ABC} \right)} \right)\)

Vì $\Delta ABC$ đều và $AA' = A'B = A'C \Rightarrow A'ABC$ là hình chóp đều.

Gọi $A'H$ là chiều cao của lăng trụ, suy ra $H$ là trọng tâm $\Delta ABC,\widehat {A'AH} = 60^\circ $.

$ \Rightarrow d\left( {A',\left( {ABC} \right)} \right) = A'H = AH.\tan 60^\circ  = \dfrac{{a\sqrt 3 }}{3}\sqrt 3  = a$.

Câu 7 Trắc nghiệm

Cho hình lăng trụ tam giác \(ABC.A'B'C'\) có cạnh bên bằng $a.$ Các cạnh bên của lăng trụ tạo với mặt đáy góc ${60^{\rm{o}}}.$ Hình chiếu vuông góc của $A'$ lên mặt phẳng $\left( {ABC} \right)$ là trung điểm của $BC$. Khoảng cách giữa hai mặt đáy của lăng trụ bằng bao nhiêu?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: $A'H \bot \left( {ABC} \right) \Rightarrow \widehat {A'AH} = {60^{\rm{o}}}.$

\(d\left( {\left( {A'B'C'} \right),\left( {ABC} \right)} \right) = A'H = A'A.\sin {60^{\rm{o}}} = \dfrac{{a\sqrt 3 }}{2}\)

Câu 8 Trắc nghiệm

Cho hình lăng trụ \(ABC.A'B'C'\) có tất cả các cạnh đều bằng \(a\). Hình chiếu \(H\) của \(A\) trên mặt phẳng \(\left( {A'B'C'} \right)\) thuộc cạnh \(B'C'\). Biết khoảng cách giữa hai mặt phẳng đáy là \(\dfrac{a}{2}\). Tìm vị trí của \(H\) trên \(B'C'\).

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Do hình lăng trụ \(ABC.A'B'C'\) có tất cả các cạnh đều bằng \(a\) nên \(A'A = a\).

\(H\) là hình chiếu của \(A\) trên \(\left( {A'B'C'} \right)\) nên \(AH \bot \left( {A'B'C'} \right) \Rightarrow d\left( {\left( {ABC} \right),\left( {A'B'C'} \right)} \right) = AH = \dfrac{a}{2}\)

\(\Delta A'HA\) vuông tại \(H\) nên \(A'H = \sqrt {A'{A^2} - A{H^2}}  = \sqrt {{a^2} - \dfrac{{{a^2}}}{4}}  = \dfrac{{a\sqrt 3 }}{2}\)

Mặt khác \(\Delta A'B'C'\) đều cạnh \(a\) nên đường cao \(A'H' = \dfrac{{a\sqrt 3 }}{2}\) ($H'$ là trung điểm của $B'C'$)

Từ đó \(A'H = A'H'\) và \(H,H' \in B'C'\) nên \(H \equiv H'\).

Vậy \(H\) là trung điểm của \(B'C' \Rightarrow HB' = \dfrac{1}{2}B'C'\).

Câu 9 Trắc nghiệm

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Khoảng cách giữa hai mặt phẳng \((ACD')\) và \((BA'C')\) bằng

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi \(G,G'\) là trọng tâm các tam giác \(ACD',BA'C'\).

Khi đó \(DG \bot \left( {ACD'} \right),B'G' \bot \left( {BA'C'} \right)\) vì các hình chóp \(D.ACD'\) và \(B'.BA'C'\) là hình chóp đều.

Ta có: \(AC \bot \left( {BDD'B'} \right) \Rightarrow AC \bot DB'\)

Lại có \(CD' \bot \left( {ADC'B'} \right) \Rightarrow CD' \bot DB'\).

Do đó \(DB' \bot \left( {ACD'} \right)\).

Tương tự \(DB' \bot \left( {BA'C'} \right)\) nên \(\left( {ACD'} \right)//\left( {BA'C'} \right)\) và \(G,G' \in DB'\).

Do đó \(GG'\) vuông góc cả hai mặt phẳng \(\left( {ACD'} \right),\left( {BA'C'} \right)\).

Vậy khoảng cách giữa hai mặt đó là \(GG'\).

Câu 10 Trắc nghiệm

Cho hình lập phương $ABCD.A'B'C'D'$ cạnh $a.$ Khoảng cách giữa $\left( {AB'C} \right)$ và $\left( {A'DC'} \right)$ bằng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có: \(\left\{ \begin{array}{l}A'C'//AC\\DC'//AB'\end{array} \right. \Rightarrow \left( {A'C'D} \right)//\left( {ACB'} \right)\)

Gọi \(O'\) là tâm của hình vuông $A'B'C'D'$.

Ta có $d\left( {\left( {AB'C} \right),\left( {A'DC'} \right)} \right) = d\left( {B',\left( {A'DC'} \right)} \right) = d\left( {D',\left( {A'DC'} \right)} \right)$

Gọi \(I\) là hình chiếu của \(D'\) trên \(O'D\).

Vì \(D'O' \bot A'C',DO' \bot A'C'\) nên \(A'C' \bot \left( {{\rm{DOD}}'} \right) \Rightarrow A'C' \bot D'I\).

Mà \(D'I \bot DO'\) nên \(I\) là hình chiếu của \(D'\) trên $\left( {A'DC'} \right)$.

$ \Rightarrow d\left( {\left( {AB'C} \right),\left( {A'DC'} \right)} \right) = d\left( {D',\left( {A'DC'} \right)} \right) = D'I = \dfrac{{D'O'.D'D}}{{\sqrt {D'{{O'}^2} + D'{D^2}} }} = \dfrac{{\dfrac{{a\sqrt 2 }}{2}.a}}{{\sqrt {{{\left( {\dfrac{{a\sqrt 2 }}{2}} \right)}^2} + {a^2}} }} = \dfrac{{a\sqrt 3 }}{3}.$

Câu 11 Trắc nghiệm

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 4,{\rm{ }}AD = 3.\) Mặt phẳng \((ACD')\) tạo với mặt đáy một góc \({60^ \circ }.\) Tính khoảng cách giữa hai mặt đáy của hình hộp.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Gọi \(O\)  là hình chiếu của \(D\) lên \(AC\).

Ta có \(\left\{ \begin{array}{l}\left( {ACD'} \right) \cap \left( {ABCD} \right) = AC\\AC \bot DO\\AC \bot D'O\left( {AC \bot \left( {ODD'} \right) \supset OD'} \right)\end{array} \right.\)

\( \Rightarrow \left( {\widehat {\left( {D'AC} \right),\left( {ABCD} \right)}} \right) = \widehat {D'OD} = {60^0}\)

 \(AC = \sqrt {{3^2} + {4^2}}  = 5\) ; \(DO = \dfrac{{AD.DC}}{{AC}} = \dfrac{{12}}{5}\)

Khoảng cách giữa hai mặt đáy là \(DD' = DO.\tan {60^0} = \dfrac{{12\sqrt 3 }}{5}\)

Câu 12 Trắc nghiệm

Cho hình lập phương \(ABCD.A'B'C'D'\)có cạnh bằng \(a.\) Khi đó, khoảng cách giữa đường thẳng \(BD\) và mặt phẳng \((CB'D')\) bằng

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Gọi \(O,O'\) lần lượt là tâm hai đáy \(ABCD,A'B'C'D'\) .

Vì \(BD//B'D'\) nên \(BD//\left( {CB'D'} \right)\).

Do đó \(d\left( {BD,\left( {CB'D'} \right)} \right) = d\left( {O,\left( {CB'D'} \right)} \right) = \dfrac{1}{2}d\left( {A,\left( {CB'D'} \right)} \right)\)

Mà \(AO \cap \left( {CB'D'} \right) = C \Rightarrow d\left( {O,\left( {CB'D'} \right)} \right) = \dfrac{1}{2}d\left( {A,\left( {CB'D'} \right)} \right)\)

Vậy \(d\left( {BD,\left( {CB'D'} \right)} \right) = \dfrac{1}{2}d\left( {A,\left( {CB'D'} \right)} \right)\)

Ta tính \(d\left( {A,\left( {CB'D'} \right)} \right)\).

Xét tứ diện \(ACB'D'\) có \(AB' = AC = AD' = B'C = B'D' = CD' = a\sqrt 2 \) nên nó là tứ diện đều cạnh \(a\sqrt 2 \).

Gọi \(G\) là trọng tâm tam giác \(CB'D'\) thì \(CG = \dfrac{2}{3}CO' = \dfrac{2}{3}.\dfrac{{a\sqrt 2 .\sqrt 3 }}{2} = \dfrac{{a\sqrt 6 }}{3}\)

Do đó \(d\left( {A,\left( {CB'D'} \right)} \right) = AG = \sqrt {A{C^2} - C{G^2}}  = \sqrt {2{a^2} - \dfrac{{6{a^2}}}{9}}  = \dfrac{{2a\sqrt 3 }}{3}\)

Vậy \(d\left( {BD;\left( {CB'D'} \right)} \right) = \dfrac{1}{2}d\left( {A,\left( {CB'D'} \right)} \right) = \dfrac{{a\sqrt 3 }}{3}\).