Tích có hướng và ứng dụng

Kỳ thi ĐGTD ĐH Bách Khoa

Đổi lựa chọn

  •   
Câu 1 Trắc nghiệm

Cho hai véc tơ u1=(x1;y1;z1)u2=(x2;y2;z2). Kí hiệu u=[u1,u2], khi đó:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Công thức xác định tọa độ tích có hướng [u1,u2]=(|y1y2z1z2|;|z1z2x1x2|;|x1x2y1y2|)

=(y1z2y2z1;z1x2z2x1;x1y2x2y1)

Câu 2 Trắc nghiệm

Tính tích có hướng của hai véc tơ u(0;1;1),v(1;1;1).

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có:

[u,v]=(|1111|;|1101|;|0111|)

=(11;10;01)=(2;1;1)

Câu 4 Trắc nghiệm

Điều kiện để hai véc tơ u1,u2 cùng phương là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: [u1;u2]=0u1 cùng phương u2.

Câu 5 Trắc nghiệm

Hai véc tơ u=(a;1;b),v=(2;2;c) cùng phương thì:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: u=kv{a=2k1=2kb=kc{k=12a=1b=12cc=2b

Câu 6 Trắc nghiệm

Cho hai véc tơ u1,u2, chọn kết luận sai:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Vì tích có hướng của hai véc tơ vuông góc với cả hai véc tơ đó nên:

[u1;u2]u1[u1;u2].u1=0[u1;u2]u2[u1;u2].u2=0

Do đó các đáp án A, C, D đúng.

Câu 7 Trắc nghiệm

Cho ba véc tơ u1,u2,u3 thỏa mãn [u1;u2].u3=0. Khi đó ba véc tơ đó:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

[u1;u2].u3=0 ba véc tơ u1,u2,u3  đồng phẳng.

Câu 8 Trắc nghiệm

Cho hai véc tơ u1,u2, kí hiệu (u1,u2) là góc hợp bởi hai véc tơ. Chọn mệnh đề đúng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: |[u1;u2]|=|u1|.|u2|sin(u1,u2)

Câu 9 Trắc nghiệm

Sin của góc giữa hai véc tơ \overrightarrow {{u_1}} ,\overrightarrow {{u_2}} là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \left| {\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right]} \right| = \left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|\sin \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) \Rightarrow \sin \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = \dfrac{{\left| {\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right]} \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}}

Câu 10 Trắc nghiệm

Trong không gian Oxyz cho hai điểm A\left( {0; - 2;3} \right),B\left( {1;0; - 1} \right). Tính sin góc hợp bởi hai véc tơ \overrightarrow {OA} ,\overrightarrow {OB} .

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có:

\begin{array}{l}\overrightarrow {OA}  = \left( {0; - 2;3} \right) \Rightarrow \left| {\overrightarrow {OA} } \right| = \sqrt {{0^2} + {{\left( { - 2} \right)}^2} + {3^2}}  = \sqrt {13} \\\overrightarrow {OB}  = \left( {1;0; - 1} \right) \Rightarrow \left| {\overrightarrow {OB} } \right| = \sqrt {{1^2} + {0^2} + {{\left( { - 1} \right)}^2}}  = \sqrt 2 \end{array}

Suy ra \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l} - 2\\0\end{array}&\begin{array}{l}3\\ - 1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}3\\ - 1\end{array}&\begin{array}{l}0\\1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\1\end{array}&\begin{array}{l} - 2\\0\end{array}\end{array}} \right|} \right) = \left( {2;3;2} \right) 

\Rightarrow \left| {\left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right]} \right| = \sqrt {{2^2} + {3^2} + {2^2}}  = \sqrt {17}

Do đó \sin \left( {\overrightarrow {OA} ,\overrightarrow {OB} } \right) = \dfrac{{\left| {\left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right]} \right|}}{{\left| {\overrightarrow {OA} } \right|.\left| {\overrightarrow {OB} } \right|}} = \dfrac{{\sqrt {17} }}{{\sqrt {13} .\sqrt 2 }} = \sqrt {\dfrac{{17}}{{26}}}

Câu 12 Trắc nghiệm

Diện tích tam giác OBC biết B\left( {1;0;2} \right),C\left( { - 2;0;0} \right) là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có: \overrightarrow {OB}  = \left( {1;0;2} \right),\overrightarrow {OC}  = \left( { - 2;0;0} \right)

\Rightarrow \left[ {\overrightarrow {OB} ,\overrightarrow {OC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\0\end{array}&\begin{array}{l}2\\0\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}2\\0\end{array}&\begin{array}{l}1\\ - 2\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\ - 2\end{array}&\begin{array}{l}0\\0\end{array}\end{array}} \right|} \right) = \left( {0; - 4;0} \right)

Do đó {S_{OBC}} = \dfrac{1}{2}\left| {\left[ {\overrightarrow {OB} ,\overrightarrow {OC} } \right]} \right| = \dfrac{1}{2}\sqrt {0 + {{\left( { - 4} \right)}^2} + {0^2}}  = 2

Câu 14 Trắc nghiệm

Công thức nào sau đây không sử dụng để tính diện tích hình bình hành ABCD?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Diện tích hình bình hành {S_{ABCD}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right]} \right| = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right| = \left| {\left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right]} \right|

Hai công thức sau có được từ việc suy luận diện tích hình bình hành ABCD bằng hai lần diện tích tam giác ABC hoặc tam giác DCB.

Chỉ có đáp án D là công thức sai.

Câu 15 Trắc nghiệm

Diện tích hình bình hành ABCD có các điểm A\left( {1;0;0} \right),B\left( {0;1;2} \right),C\left( { - 1;0;0} \right) là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: \overrightarrow {AB}  = \left( { - 1;1;2} \right),\overrightarrow {AC}  = \left( { - 2;0;0} \right)

\Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\0\end{array}&\begin{array}{l}2\\0\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}2\\0\end{array}&\begin{array}{l} - 1\\ - 2\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l} - 1\\ - 2\end{array}&\begin{array}{l}1\\0\end{array}\end{array}} \right|} \right) = \left( {0; - 4;2} \right)

Do đó diện tích hình bình hành {S_{ABCD}} là:

{S_{ABCD}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right| = \sqrt {{0^2} + {{\left( { - 4} \right)}^2} + {2^2}}  = 2\sqrt 5

Câu 16 Trắc nghiệm

Thể tích khối tứ diện  được tính theo công thức:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Công thức tính thể tích tứ diện ABCD{V_{ABCD}} = \dfrac{1}{6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|

Câu 17 Trắc nghiệm

Trong không gian tọa độ Oxyz, tính thể tích khối tứ diện OBCD biết B\left( {2;0;0} \right),C\left( {0;1;0} \right),D\left( {0;0; - 3} \right).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \overrightarrow {OB}  = \left( {2;0;0} \right),\overrightarrow {OC}  = \left( {0;1;0} \right),\overrightarrow {OD}  = \left( {0;0; - 3} \right)

Do đó \left[ {\overrightarrow {OB} ,\overrightarrow {OC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\1\end{array}&\begin{array}{l}0\\0\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\0\end{array}&\begin{array}{l}2\\0\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}2\\0\end{array}&\begin{array}{l}0\\1\end{array}\end{array}} \right|} \right) = \left( {0;0;2} \right)

Suy ra {V_{OBCD}} = \dfrac{1}{6}\left| {\left[ {\overrightarrow {OB} ,\overrightarrow {OC} } \right].\overrightarrow {OD} } \right| = \dfrac{1}{6}\left| {0.0 + 0.0 + 2.\left( { - 3} \right)} \right| = 1

Câu 18 Trắc nghiệm

Công thức tính thể tích khối hộp ABCD.A'B'C'D' là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Khối hộp ABCD.A'B'C'D' có thể tích {V_{ABCD.A'B'C'D'}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\overrightarrow {AA'} } \right|

Câu 19 Trắc nghiệm

Trong không gian Oxyz cho các điểm A\left( {1; - 1;0} \right),B\left( { - 1;0;2} \right),D\left( { - 2;1;1} \right),A'\left( {0;0;0} \right). Thể tích khối hộp ABCD.A'B'C'D' là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: \overrightarrow {AB}  = \left( { - 2;1;2} \right),\overrightarrow {AD}  = \left( { - 3;2;1} \right),\overrightarrow {AA'}  = \left( { - 1;1;0} \right)

Suy ra

\begin{array}{l}\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\2\end{array}&\begin{array}{l}2\\1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}2\\1\end{array}&\begin{array}{l} - 2\\ - 3\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l} - 2\\ - 3\end{array}&\begin{array}{l}1\\2\end{array}\end{array}} \right|} \right) = \left( { - 3; - 4; - 1} \right)\\ \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\overrightarrow {AA'}  = \left( { - 3} \right).\left( { - 1} \right) + \left( { - 4} \right).1 + \left( { - 1} \right).0 =  - 1\end{array}

Khi đó: {V_{ABCD.A'B'C'D'}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\overrightarrow {AA'} } \right| = \left| { - 1} \right| = 1

Câu 20 Trắc nghiệm

Trong không gian Oxyz, cho hai điểm A\left( {1;0;2} \right), B\left( {2; - 1;3} \right). Số điểm M thuộc trục Oy sao cho tam giác MAB có diện tích bằng \dfrac{{\sqrt 6 }}{4} là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Gọi M\left( {0;m;0} \right) \in Oy.

Ta có: \overrightarrow {AM}  = \left( { - 1;m; - 2} \right), \overrightarrow {AB}  = \left( {1; - 1;1} \right).

\Rightarrow \left[ {\overrightarrow {AM} ;\overrightarrow {AB} } \right] = \left( {m - 2; - 1;1 - m} \right).

\begin{array}{l} \Rightarrow {S_{MAB}} = \dfrac{1}{2}\left[ {\overrightarrow {AM} ;\overrightarrow {AB} } \right]\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}\sqrt {{{\left( {m - 2} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( {1 - m} \right)}^2}} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}\sqrt {2{m^2} - 6m + 6} \\ \Rightarrow \dfrac{1}{2}\sqrt {2{m^2} - 6m + 6}  = \dfrac{{\sqrt 6 }}{4}\\ \Leftrightarrow 2\sqrt {2{m^2} - 6m + 6}  = \sqrt 6 \\ \Leftrightarrow 4\left( {2{m^2} - 6m + 6} \right) = 6\\ \Leftrightarrow 8{m^2} - 24m + 18 = 0\\ \Leftrightarrow 4{m^2} - 12m + 9 = 0\\ \Leftrightarrow {\left( {2m - 3} \right)^2} = 0\\ \Leftrightarrow m = \dfrac{3}{2}\end{array} 

Vậy có 1 điểm M thỏa mãn yêu cầu bài toán là M\left( {0;\dfrac{3}{2};0} \right).