Nguyên hàm - Định nghĩa và tính chất
Kỳ thi ĐGTD ĐH Bách Khoa
Cho \(f\left( x \right)\) là đạo hàm của hàm số \(F\left( x \right)\). Chọn mệnh đề đúng:
Hàm số \(f\left( x \right)\) là đạo hàm của \(F\left( x \right)\) nên \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) hay \(\int {f\left( x \right)dx}=F\left( x \right) +C \).
Chọn mệnh đề đúng:
Ta có: \(\int {f'\left( x \right)dx} = f\left( x \right) + C\).
Hàm số nào không là nguyên hàm của hàm số \(y = 3{x^4}\)?
Quan sát các đáp án ta thấy mỗi hàm số ở đáp án B, C, D đều có đạo hàm bằng \(3{x^4}\).
Chỉ có đáp án A: \(\left( {12{x^3}} \right)' = 36{x^2} \ne 3{x^4}\) nên A sai.
Hàm số $y = \sin x$ là một nguyên hàm của hàm số nào trong các hàm số sau?
\(\left( {\sin x} \right)' = \cos x \Rightarrow y = \sin x\) là một nguyên hàm của hàm số $y = \cos x$.
Trong các mệnh đề sau, mệnh đề nào sai?
Có \(\int {\sin xdx} = - \cos x + C\) nên A sai.
Chọn mệnh đề đúng:
Ta có: \(\int {{a^x}dx} = \dfrac{{{a^x}}}{{\ln a}} + C\left( {0 < a \ne 1} \right)\) nên A đúng.
Chọn mệnh đề sai:
Ta có: \(\int {\dfrac{1}{{{{\cos }^2}x}}dx} = \tan x + C = \dfrac{{\sin x}}{{\cos x}} + C\) nên A và D đúng.
\(\int {\dfrac{1}{{{{\sin }^{\rm{2}}}x}}dx = - \cot x + C} \) nên C đúng, B sai.
Chọn mệnh đề đúng:
Ta có: \(\int {\dfrac{1}{{{{\sin }^{\rm{2}}}x}}dx} = - \cot x + C;\int {\dfrac{1}{{{{\cos }^2}x}}dx} = \tan x + C\) nên:$\int {\left( {\dfrac{1}{{{{\sin }^2}x}} + \dfrac{1}{{{{\cos }^2}x}}} \right)dx} = \int {\dfrac{1}{{{{\sin }^{\rm{2}}}x}}dx} + \int {\dfrac{1}{{{{\cos }^2}x}}dx} $
$= - \cot x + \tan x + C = \tan x - \cot x + C$
Cho hàm số $f\left( x \right) = \dfrac{1}{{{{\sin }^2}x}}$. Nếu $F\left( x \right)$ là một nguyên hàm của hàm số $f\left( x \right)$ và đồ thị hàm số $y = F\left( x \right)$ đi qua $M\left( {\dfrac{\pi }{3};0} \right)$ thì là:
Ta có: $\int {f\left( x \right)dx} = \int {\dfrac{1}{{{{\sin }^2}x}}dx} = - \cot x + C = F\left( x \right)$
Đồ thị hàm số $y = F\left( x \right)$ đi qua $M\left( {\dfrac{\pi }{3};0} \right)$ nên $F\left( \dfrac{\pi }{3} \right)=0$
$ \Leftrightarrow - \cot \dfrac{\pi }{3} + C = 0 \Leftrightarrow C = \dfrac{1}{{\sqrt 3 }} \Rightarrow F\left( x \right) = - \cot x + \dfrac{1}{{\sqrt 3 }}$
Cho hàm số $f\left( x \right) = \dfrac{1}{{x + 2}}$. Hãy chọn mệnh đề sai:
Họ nguyên hàm của hàm số đã cho là: $F\left( x \right) = \int {\dfrac{1}{{x + 2}}dx = \ln \left| {x + 2} \right| + C} $ nên C đúng, A sai.
Do đó các hàm số $y = \ln \left| {x + 2} \right|$ và $y = \ln \left( {3\left| {x + 2} \right|} \right) = \ln 3 + \ln \left| {x + 2} \right|$ đều là một nguyên hàm của $f\left( x \right)$ nên B, D đúng.
Họ nguyên hàm của hàm số $f\left( x \right) = x\left( {2 + 3{x^2}} \right)$ là
Họ nguyên hàm của hàm số đã cho là:
\(\int {f\left( x \right)dx} = \int {\left( {2x + 3{x^3}} \right)dx} \) \( = \int {2xdx} + \int {3{x^3}dx} \) \( = 2\int {xdx} + 3\int {{x^3}dx} \) \( = 2.\dfrac{{{x^2}}}{2} + 3.\dfrac{{{x^4}}}{4} + C\) \( = {x^2} + \dfrac{{3{x^4}}}{4} + C\) \( = {x^2}\left( {1 + \dfrac{3}{4}{x^2}} \right) + C\)
Tìm nguyên hàm của hàm số \(f(x) = {x^2} + \dfrac{2}{{{x^2}}}.\)
Ta có: $\int {f\left( x \right)dx} = \int {\left( {{x^2} + \dfrac{2}{{{x^2}}}} \right)dx} = \dfrac{1}{3}{x^3} - \dfrac{2}{x} + C$
Cho hàm số \(f\left( x \right) = {e^{ - 2018x + 2017}}\). Gọi \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) mà \(F\left( 1 \right) = e\). Chọn mệnh đề đúng:
Ta có:
\(F\left( x \right) = \int {f\left( x \right)dx} = \int {{e^{ - 2018x + 2017}}dx} = \dfrac{1}{{ - 2018}}{e^{ - 2018x + 2017}} + C\)
Với \(x = 1\) thì \( - \dfrac{1}{{2018}}{e^{ - 1}} + C = e \Leftrightarrow C = e + \dfrac{1}{{2018}}{e^{ - 1}}\)
Vậy \(F\left( x \right) = - \dfrac{1}{{2018}}{e^{ - 2018x + 2017}} + e + \dfrac{1}{{2018e}}\).
Cho hàm số \(F\left( x \right) = {x^2}\) là một nguyên hàm của hàm số \(f\left( x \right){e^{4{\rm{x}}}}\), hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\). Họ nguyên hàm của hàm số \(f'\left( x \right){e^{4{\rm{x}}}}\) là
Vì \(F\left( x \right) = {x^2}\) là nguyên hàm của hàm số \(f\left( x \right){e^{4x}}\) nên:
\(\begin{array}{l}f\left( x \right){e^{4x}} = F'\left( x \right) = 2x\\ \Rightarrow f\left( x \right) = \dfrac{{2x}}{{{e^{4x}}}}\end{array}\)
\(\begin{array}{l} \Rightarrow f'\left( x \right) = \dfrac{{2{e^{4x}} - 8x.{e^{4x}}}}{{{{\left( {{e^{4x}}} \right)}^2}}} = \dfrac{{2 - 8x}}{{{e^{4x}}}}\\ \Rightarrow f'\left( x \right){e^{4x}} = 2 - 8x\\ \Rightarrow \int {f'\left( x \right){e^{4x}}dx = \int {\left( {2 - 8x} \right)dx = - 4{x^2} + 2x + C} } \end{array}\)
Giả sử \(F\left( x \right) = \left( {a{x^2} + bx + c} \right){e^x}\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^2}{e^x}\). Tính tích \(P = abc\).
Bước 1:
Vì \(F\left( x \right)\) là 1 nguyên hàm của hàm số \(f\left( x \right)\) nên ta có \(F'\left( x \right) = f\left( x \right)\).
\(\begin{array}{l}F'\left( x \right) = \left( {2ax + b} \right){e^x} + \left( {a{x^2} + bx + c} \right){e^x}\\F'\left( x \right) = \left( {a{x^2} + bx + c + 2ax + b} \right){e^x}\\F'\left( x \right) = \left[ {a{x^2} + \left( {2a + b} \right)x + b + c} \right]{e^x}\\=x^2.e^x\end{array}\)
Bước 2:
Ta có:
\(\begin{array}{l}{x^2} = {1.{x^2} + 0.x + 0}\\\left[ {a.{x^2} + \left( {2a + b} \right)x + b + c} \right]{e^x} = {x^2}.{e^x}\\ \Leftrightarrow a.{x^2} + \left( {2a + b} \right)x + b + c = {x^2}\\ \Leftrightarrow a.{x^2} + \left( {2a + b} \right)x + b + c = 1.{x^2} + 0.x + 0\end{array}\)
Đồng nhất hệ số ta có: \(\left\{ \begin{array}{l}a = 1\\2a + b = 0\\b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\\c = 2\end{array} \right.\).
Vậy \(P = abc = 1.\left( { - 2} \right).2 = - 4.\)
Tìm hàm số $F\left( x \right)$ biết $F'\left( x \right) = 3{x^2} + 2x-1$ và đồ thị hàm số $y = F\left( x \right)$ cắt trục tung tại
điểm có tung độ bằng $2$. Tổng các hệ số của \(F\left( x \right)\) là:
Ta có: $F'\left( x \right) = 3{x^2} + 2x-1 \Rightarrow F\left( x \right) = \int {F'\left( x \right)dx} = \int {\left( {3{x^2} + 2x-1} \right)dx} = {x^3} + {x^2} - x + C$
Tại \(x = 0\) thì $y=2$ suy ra \(2 = C \Rightarrow F\left( x \right) = {x^3} + {x^2} - x + 2\) và tổng các hệ số của \(F\left( x \right)\) là \(3\).
Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f\left( 2 \right) = - \dfrac{4}{{19}}\) và \(f'\left( x \right) = {x^3}{f^2}\left( x \right)\,\,\forall x \in \mathbb{R}\). Giá trị của \(f\left( 1 \right)\) bằng:
Theo bài ra ta có: \(f'\left( x \right) = {x^3}{f^2}\left( x \right)\,\,\forall x \in \mathbb{R} \Leftrightarrow \dfrac{{f'\left( x \right)}}{{{f^2}\left( x \right)}} = {x^3}\,\,\forall x \in \mathbb{R}\).
Lấy nguyên hàm hai vế ta có: \(\int {\dfrac{{f'\left( x \right)}}{{{f^2}\left( x \right)}}dx} = \int {{x^3}dx} \) \( \Leftrightarrow - \dfrac{1}{{f\left( x \right)}} = \dfrac{{{x^4}}}{4} + C\).
Lại có: \(f\left( 2 \right) = - \dfrac{4}{{19}}\)\( \Leftrightarrow - \dfrac{1}{{f\left( 2 \right)}} = 4 + C \Leftrightarrow \dfrac{{19}}{4} = 4 + C\) \( \Leftrightarrow C = \dfrac{3}{4}\).
Do đó \( - \dfrac{1}{{f\left( x \right)}} = \dfrac{{{x^4}}}{4} + \dfrac{3}{4}\).
Thay \(x = 1\) ta có \( - \dfrac{1}{{f\left( 1 \right)}} = \dfrac{1}{4} + \dfrac{3}{4} = 1\). Vậy \(f\left( 1 \right) = - 1\).
Họ nguyên hàm của hàm số \(y=\dfrac{{2x + 3}}{{2{x^2} - x - 1}} \) là:
\(\dfrac{{2x + 3}}{{2{x^2} - x - 1}} = \dfrac{{2x + 3}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}}\)
Do đó, ta cần biến đổi \(\dfrac{{2x + 3}}{{2{x^2} - x - 1}} = \dfrac{a}{{2x + 1}} + \dfrac{b}{{x - 1}}\) để tính được nguyên hàm.
Ta có:
\(\begin{array}{l}\dfrac{a}{{2x + 1}} + \dfrac{b}{{x - 1}} = \dfrac{{a\left( {x - 1} \right) + b\left( {2x + 1} \right)}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}}\\ = \dfrac{{ax - a + 2bx + b}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}} = \dfrac{{\left( {a + 2b} \right)x - a + b}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}}\end{array}\)
\(\begin{array}{l} \Rightarrow \dfrac{{2x + 3}}{{2{x^2} - x - 1}} = \dfrac{{\left( {a + 2b} \right)x - a + b}}{{\left( {2x + 1} \right)\left( {x - 1} \right)}}\\ \Leftrightarrow \left\{ \begin{array}{l}a + 2b = 2\\ - a + b = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \dfrac{4}{3}\\b = \dfrac{5}{3}\end{array} \right.\end{array}\)
Do đó:
\(\int {\dfrac{{2x + 3}}{{2{x^2} - x - 1}}dx} {\rm{\;}}\)\( = \int {\left[ { - \dfrac{4}{3}.\dfrac{1}{{\left( {2x + 1} \right)}} + \dfrac{5}{3}.\dfrac{1}{{\left( {x - 1} \right)}}} \right]dx} {\rm{\;}}\)\( = {\rm{\;}} - \dfrac{4}{3}\int {\dfrac{1}{{\left( {2x + 1} \right)}}dx} {\rm{\;}} + \dfrac{5}{3}\int {\dfrac{1}{{\left( {x - 1} \right)}}dx} \)\( = {\rm{\;}} - \dfrac{4}{3}.\dfrac{1}{2}\ln \left| {2x + 1} \right| + \dfrac{5}{3}\ln \left| {x - 1} \right| + C\)\( = {\rm{\;}} - \dfrac{2}{3}\ln \left| {2x + 1} \right| + \dfrac{5}{3}\ln \left| {x - 1} \right| + C\)
Cho hàm số $f\left( x \right)$ xác định và liên tục trên $\mathbb{R}$ và thỏa mãn đồng thời các điều kiện sau
$f\left( x \right) > 0;{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} f'\left( x \right) = \dfrac{{x.f\left( x \right)}}{{\sqrt {{x^2} + 1} }};{\mkern 1mu} {\mkern 1mu} \forall x \in \mathbb{R}$ và $f\left( 0 \right) = e.$ Giá trị của $f\left( {\sqrt 3 } \right)$ bằng
Ta có $f'\left( x \right) = \dfrac{{x.f\left( x \right)}}{{\sqrt {{x^2} + 1} }} \Leftrightarrow \dfrac{{f'\left( x \right)}}{{f\left( x \right)}} = \dfrac{x}{{\sqrt {{x^2} + 1} }}$$ \Leftrightarrow \int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}{\rm{d}}x} = \int {\dfrac{x}{{\sqrt {{x^2} + 1} }}{\rm{d}}x} $
$ \Leftrightarrow \int {\dfrac{{{\rm{d}}\left( {f\left( x \right)} \right)}}{{f\left( x \right)}}} = \int {\dfrac{{{\rm{d}}\left( {{x^2} + 1} \right)}}{{2\sqrt {{x^2} + 1} }}} = \sqrt {{x^2} + 1} + C$$ \Leftrightarrow \ln f\left( x \right) = \sqrt {{x^2} + 1} + C \Leftrightarrow f\left( x \right) = {e^{\sqrt {{x^2}{\kern 1pt} + {\kern 1pt} 1} {\kern 1pt} + {\kern 1pt} {\kern 1pt} C}}$
Mà $f\left( 0 \right) = e$$ \Rightarrow $${e^{C{\kern 1pt} + {\kern 1pt} 1}} = e \Rightarrow C = 0.$
Vậy $f\left( {\sqrt 3 } \right) = {e^2}.$
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: \(f\left( 0 \right) = 2\sqrt 2 \), \(f\left( x \right) > 0,\forall x \in \mathbb{R}\) và \(f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\,\forall x \in \mathbb{R}\). Khi đó giá trị \(f\left( 1 \right)\) bằng
Ta có: \(f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} \)
\( \Rightarrow \dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }} = 2x + 1 \Rightarrow \int {\dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} = \int {\left( {2x + 1} \right)dx} \)
Tính \(\int {\dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} \) ta đặt \(\sqrt {1 + {f^2}\left( x \right)} = t \Rightarrow 1 + {f^2}\left( x \right) = {t^2} \Rightarrow 2f\left( x \right)f'\left( x \right)dx = 2tdt\) \( \Rightarrow f\left( x \right)f'\left( x \right)dx = tdt\)
Thay vào ta được \(\int {\dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} = \int {\dfrac{{tdt}}{t}} = \int {dt} = t + C = \sqrt {1 + {f^2}\left( x \right)} + C\)
Do đó \(\sqrt {1 + {f^2}\left( x \right)} + C = {x^2} + x\).
\(f\left( 0 \right) = 2\sqrt 2 \Rightarrow \sqrt {1 + {{\left( {2\sqrt 2 } \right)}^2}} + C = 0 \Leftrightarrow C = - 3\).
Từ đó:
\(\begin{array}{l}\sqrt {1 + {f^2}\left( x \right)} - 3 = {x^2} + x \Rightarrow \sqrt {1 + {f^2}\left( 1 \right)} - 3 = 1 + 1 \Leftrightarrow \sqrt {1 + {f^2}\left( 1 \right)} = 5\\ \Leftrightarrow 1 + {f^2}\left( 1 \right) = 25 \Leftrightarrow {f^2}\left( 1 \right) = 24 \Leftrightarrow f\left( 1 \right) = \sqrt {24} \end{array}\)