Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Kỳ thi ĐGTD ĐH Bách Khoa
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \sin x$ trên đoạn $\left[ { - \dfrac{\pi }{2}; - \dfrac{\pi }{3}} \right]$ lần lượt là
Ta có $y' = \cos x \Rightarrow y' = 0 \Leftrightarrow \cos x = 0 \Leftrightarrow x = \dfrac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)$
Do $x\in \left[ { - \dfrac{\pi }{2}; - \dfrac{\pi }{3}} \right]$ nên $k=-1$ hay $x=-\dfrac{\pi }{2}$
Suy ra $y\left( { - \dfrac{\pi }{2}} \right) = - 1;\;\;y\left( { - \dfrac{\pi }{3}} \right) = - \dfrac{{\sqrt 3 }}{2} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\rm{\;}}&{\mathop {\max}\limits_{\left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right]}y = - \dfrac{{\sqrt 3 }}{2}}\\{{\rm{ \;}}}&{\mathop {\min }\limits_{\left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right]} y = - 1}\end{array}} \right.$
Cho biết GTLN của hàm số $f\left( x \right)$ trên $\left[ {1;3} \right]$ là $M = - 2$. Chọn khẳng định đúng:
Nếu $M = - 2$ là GTLN của hàm số $y = f\left( x \right)$ trên $\left[ {1;3} \right]$ thì $f\left( x \right) \leqslant - 2,\forall x \in \left[ {1;3} \right]$.
Cho hàm số $f\left( x \right)$ xác định trên $\left[ {0;2} \right]$ và có GTNN trên đoạn đó bằng $5$. Chọn kết luận đúng:
GTNN của $f\left( x \right)$ trên $\left[ {0;2} \right]$ bằng $5$ nên $f\left( x \right) \geqslant 5,\forall x \in \left[ {0;2} \right] \Rightarrow f\left( 2 \right) \geqslant 5$.
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(y = f'\left( x \right)\) như hình vẽ. Xét hàm số \(g\left( x \right) = f\left( x \right) - \dfrac{1}{3}{x^3} - \dfrac{3}{4}{x^2} + \dfrac{3}{2}x + 2018\). Mệnh đề nào dưới đây đúng?
Ta có: \(g\left( x \right) = f\left( x \right) - \dfrac{1}{3}{x^3} - \dfrac{3}{4}{x^2} + \dfrac{3}{2}x + 2018\,\,\,\,\, \Rightarrow \,\,\,\,\,g'\left( x \right) = f'\left( x \right) - {x^2} - \dfrac{3}{2}x + \dfrac{3}{2}\)
Căn cứ vào đồ thị \(y = f'\left( x \right)\), ta có: $\left\{ \begin{array}{l}f'\left( { - 1} \right) = - 2\\f'\left( 1 \right) = 1\\f'\left( { - 3} \right) = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}g'\left( { - 1} \right) = 0\\g'\left( 1 \right) = 0\\g'\left( { - 3} \right) = 0\end{array} \right.$
Ngoài ra, vẽ đồ thị \(\left( P \right)\) của hàm số \(y = {x^2} + \dfrac{3}{2}x - \dfrac{3}{2}\) trên cùng hệ trục tọa độ như hình vẽ bên (đường nét đứt), ta thấy \(\left( P \right)\) đi qua các điểm \(\left( { - 3;3} \right)\), \(\left( { - 1; - 2} \right)\), \(\left( {1;1} \right)\) với đỉnh \(I\left( { - \dfrac{3}{4}; - \dfrac{{33}}{{16}}} \right)\). Rõ ràng
- Trên khoảng $\left( { - 1;1} \right)$ thì \(f'\left( x \right) > {x^2} + \dfrac{3}{2}x - \dfrac{3}{2}\), nên \(g'\left( x \right) > 0\;\;\forall x \in \left( { - 1;1} \right)\)
- Trên khoảng $\left( { - 3; - 1} \right)$ thì \(f'\left( x \right) < {x^2} + \dfrac{3}{2}x - \dfrac{3}{2}\), nên \(g'\left( x \right) < 0\;\;\forall x \in \left( { - 3; - 1} \right)\)
Từ những nhận định trên, ta có bảng biến thiên của hàm \(y = g'\left( x \right)\) trên \( \left[ { - 3;1} \right]\) như sau:
Vậy \(\mathop {\min }\limits_{\left[ { - 3;\,\,1} \right]} g\left( x \right) = g\left( { - 1} \right)\)
Giá trị nhỏ nhất của hàm số $y = 2x + \cos x$ trên đoạn $\left[ {0;1} \right]$ là :
Ta có $y' = 2 - \sin x > 0{\mkern 1mu} {\mkern 1mu} \forall x \in R \Rightarrow $ Hàm số luôn đồng biến trên $\left[ {0;1} \right]$
$ \Rightarrow \mathop {\min }\limits_{\left[ {0;1} \right]} y = y\left( 0 \right) = 1$.
Hàm số $y = {\left( {x + m} \right)^3} + {\left( {x + n} \right)^3} - {x^3}$ (tham số $m;n$) đồng biến trên khoảng $\left( { - \infty ;\, + \infty } \right)$. Giá trị nhỏ nhất của biểu thức $P = 4\left( {{m^2} + {n^2}} \right) - m - n$ bằng
Ta có $y' = 3{\left( {x + m} \right)^2} + 3{\left( {x + n} \right)^2} - 3{x^2} = 3\left[ {{x^2} + 2\left( {m + n} \right)x + {m^2} + {n^2}} \right]$
Hàm số đồng biến trên $\left( { - \infty ;\, + \infty } \right)$$ \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta ' \le 0\end{array} \right. \Leftrightarrow mn \le 0$
TH1: $mn = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\n = 0\end{array} \right.$
Do vai trò của $m,n$ là như nhau nên ta chỉ cần xét trường hợp $m = 0$.
$ \Rightarrow P = 4{n^2} - n = \left( {2n - \dfrac{1}{4}} \right)^2 - \dfrac{1}{{16}} \ge - \dfrac{1}{{16}}\left( 1 \right)$
TH2: $m\,n < 0 \Leftrightarrow m > 0;\,n < 0$ (do vai trò của $m,n$ như nhau).
Ta có $P = {\left( {2m - \dfrac{1}{4}} \right)^2} - \dfrac{1}{{16}} + 4{n^2} + \left( { - n} \right) > - \dfrac{1}{{16}}\left( 2 \right)$
Từ $\left( 1 \right),\left( 2 \right)$ ta có ${P_{\min }} = - \dfrac{1}{{16}}$.
Dấu "=" xảy ra khi và chỉ khi $m = \dfrac{1}{8};n = 0$ hoặc $m = 0;n = \dfrac{1}{8}$
Gọi $m$ là giá trị nhỏ nhất của hàm số $y = x - 1 + \dfrac{4}{{x - 1}}$ trên khoảng $\left( {1; + \infty {\rm{\;}}} \right)$. Tìm $m?$
${\rm{\;}}x > 1 \Leftrightarrow x - 1 > 0$
$ \Rightarrow y = x - 1 + \dfrac{4}{{x - 1}} \ge 2\sqrt {\left( {x - 1} \right).\dfrac{4}{{x - 1}}} = 2.2 = 4$
Dấu bằng xảy ra $ \Leftrightarrow x - 1 = \dfrac{4}{{x - 1}} \Leftrightarrow {\left( {x - 1} \right)^2} = 4 \Leftrightarrow x = 3$.
Vậy GTNN của hàm số là $m=4$ khi $x=3$.
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình vẽ, chọn kết luận đúng:
Ta có:
+) $\mathop {\max }\limits_{\left[ { - 3;0} \right]} f\left( x \right) = f\left( 0 \right) = - 3$ nên A sai.
+) $\mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 2 \right) = - 7$ nên B đúng.
+) Vì $\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - \infty $ nên không tồn tại $\mathop {\min}\limits_{\left( { - \infty ;2} \right]} f\left( x \right)$ nên C sai.
+) $\mathop {\max }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = f\left( 0 \right) = - 3$ nên D sai.
Cô An đang ở khách sạn \(A\) bên bờ biển, cô cần đi du lịch đến hòn đảo \(C\). Biết rằng khoảng cách từ đảo \(C\) đến bờ biển là \(10\;{\rm{km}}\), khoảng cách từ khách sạn \(A\) đến điểm \(B\) trên bờ gần đảo \(C\) nhất là \(50\;{\rm{km}}\). Từ khách sạn \(A\), cô An có thể đi đường thủy hoặc đi đường bộ rồi đi đường thủy để đến hòn đảo \(C\) (như hình vẽ bên). Biết rằng chi phí đi đường thủy là \(5\) USD/km, chi phí đi đường bộ là \(3\)USD/km. Hỏi cô An phải đi đường bộ một khoảng bao nhiêu km để chi phí là nhỏ nhất.
Gọi \(AD\) là quãng đường cô An đi đường bộ.
Đặt \(DB = x\,\left( {{\rm{km}}} \right)\left( {0 \le x \le 50} \right)\) \( \Rightarrow AD = 50 - x\,\left( {{\rm{km}}} \right)\).
Chi phí của cô An: \(f\left( x \right) = \left( {50 - x} \right)3 + \sqrt {{x^2} + {{10}^2}} {\rm{.5 }}\left( {{\rm{USD}}} \right)\)
\(f\left( x \right)\) liên tục trên \(\left[ {0;50} \right]\).
Ta có $f'\left( x \right) = - 3 + 5.\dfrac{{x{\rm{ }}}}{{\sqrt {{x^2} + 100} }}$$ = \dfrac{{ - 3\sqrt {{x^2} + 100} + 5x{\rm{ }}}}{{\sqrt {{x^2} + 100} }}$
$f'\left( x \right) = 0$$ \Leftrightarrow - 3\sqrt {{x^2} + 100} + 5x{\rm{ }} = 0$$ \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\9\left( {{x^2} + 100} \right) = 25{x^2}\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} = \dfrac{{9.100}}{{16}}\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\x = \dfrac{{15}}{2}\end{array} \right.$.
Ta có \(f\left( 0 \right) = 200;\,\,f\left( {50} \right) = 50\sqrt {26} ;\,\,f\left( {\dfrac{{15}}{2}} \right) = 190\)
Để chi phí ít nhất thì $x = \dfrac{{15}}{2}$.
Vậy cô An phải đi đường bộ một khoảng: \(AD = 50 - \dfrac{{15}}{2} = \dfrac{{85}}{2}\left( {{\rm{km}}} \right)\) để chi phí ít nhất.
Cho hàm số $y = f\left( x \right)$ có đồ thị như hình vẽ. Khẳng định nào sau đây là đúng?
A sai vì $y=3$ là giá trị cực đại của hàm số, không phải giá trị lớn nhất.
B sai vì hàm số đồng biến trên các khoảng $\left( { - \infty ;0} \right),\left( {2; + \infty } \right)$.
C sai vì $x=2$ là điểm cực tiểu của hàm số không phải giá trị cực tiểu.
D đúng vì trên đoạn $\left[ {0;4} \right]$ thì hàm số đạt GTNN (cũng là giá trị cực tiểu) bằng $ - 1$ đạt được tại $x = 2$.
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định đúng?
Đáp án A: Hàm số đạt cực đại tại $x = 0$ và $y = 3$ là giá trị cực đại của hàm số nên A sai.
Đáp án B: GTNN và giá trị cực tiểu của hàm số là $y = 0$ nên B đúng và C sai.
Đáp án D: Hàm số không có GTLN vì $\mathop {\lim }\limits_{x \to \pm \infty } y = + \infty $.
Ông Bình đặt thợ làm một bể cá, nguyên liệu bằng kính trong suốt, không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được \(220500\,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\) nước. Biết tỉ lệ giữa chiều cao và chiều rộng của bể bằng \(3\). Xác định diện tích đáy của bể cá để tiết kiệm nguyên vật liệu nhất.
Gọi \(a\), \(b\), \(c > 0\) lần lượt là chiều rộng, dài, cao của hình hộp chữ nhật.
Theo đề \(V = abc = 220500\) và \(c = 3a \Rightarrow 3{a^2}b = 220500 \Rightarrow ab = \dfrac{{73500}}{a}\)
Ta có \({S_{tp}} = ab + 2ac + 2bc\)\( = ab + 6{a^2} + 6ab = 7ab + 6{a^2}\)
\( = \dfrac{{514500}}{a} + 6{a^2}\)\( = 6\left( {\dfrac{{42875}}{a} + \dfrac{{42875}}{a} + {a^2}} \right)\)
\({S_{tp}} = 6\left( {\dfrac{{42875}}{a} + \dfrac{{42875}}{a} + {a^2}} \right) \ge 6.3\sqrt[3]{{\dfrac{{42875}}{a}.\dfrac{{42875}}{a}.{a^2}}} = 22050.\)
Suy ra \({S_{tp}}\) nhỏ nhất khi $\dfrac{42875}{a}={{a}^{2}}\Leftrightarrow a=35\Rightarrow b=60\Rightarrow {{S}_{}}=2100\,\,\,\text{c}{{\text{m}}^{\text{2}}}$
Tìm giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$
$y' = 3{x^2} - 10x + 3 = 0 \Leftrightarrow \left[ \begin{gathered}x = 3 \in \left[ {2;4} \right] \hfill \\x = \dfrac{1}{3} \notin \left[ {2;4} \right] \hfill \\ \end{gathered} \right.$
$f\left( 2 \right) = - 7,f\left( 3 \right) = - 10,f\left( 4 \right) = - 5$
Vậy giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$ là $M = - 5$
Tìm GTLN và GTNN của hàm số $y = {x^5} - 5{x^4} + 5{x^3} + 1$ trên đoạn $\left[ { - 1;2} \right]$
Ta có: $y' = 5{{\text{x}}^4} - 20{{\text{x}}^3} + 15{{\text{x}}^2} = 0 \Leftrightarrow 5{x^2}\left( {{x^2} - 4x + 3} \right) = 0 \Leftrightarrow \left[ \begin{gathered}x = 0 \in \left[ { - 1;2} \right] \hfill \\x = 1 \in \left[ { - 1;2} \right] \hfill \\x = 3 \notin \left[ { - 1;2} \right] \hfill \\ \end{gathered} \right.$
$f( - 1) = - 10, f(0) = 1,$ $ f(1) = 2, f(2) = - 7$
Vậy giá trị lớn nhất, nhỏ nhất của hàm trên $\left[ { - 1;2} \right]$ lần lượt là $2$ và $ - 10$
Nhà xe khoán cho hai tài xế ta-xi An và Bình mỗi người lần lượt nhận $32$ lít và $72$ lít xăng. Hỏi tổng số ngày ít nhất là bao nhiêu để hai tài xế chạy tiêu thụ hết số xăng của mình được khoán, biết rằng chỉ tiêu cho hai người một ngày tổng cộng chỉ chạy đủ hết $10$ lít xăng?
Gọi $x$ là số lít xăng mà An đã dùng trong một ngày. Với $0 < x < 10$.
$ \Rightarrow $ $10 - x$ là số lít xăng mà Bình đã dùng trong một ngày.
Khi đó
+ Để An tiêu thụ hết $32$ lít xăng cần $\dfrac{{32}}{x}$ ngày.
+ Để Bình tiêu thụ hết $72$ lít xăng cần $\dfrac{{72}}{{10 - x}}$ ngày.
Vậy tổng số ngày chạy xe của hai tài xế là
$y = \dfrac{{32}}{x} + \dfrac{{72}}{{10 - x}} \Rightarrow y' = - \dfrac{{32}}{{{x^2}}} + \dfrac{{72}}{{{{\left( {10 - x} \right)}^2}}} \Rightarrow y' = 0 \Leftrightarrow x = 4$
Bảng biến thiên:
Nhìn bảng biến thiên ta thấy tổng số ngày chạy xe ít nhất của hai tài xế là \(20\) ngày.
Giá trị lớn nhất của hàm số $f\left( {\text{x}} \right) = \dfrac{{6 - 8{\text{x}}}}{{{x^2} + 1}}$ trên tập xác định của nó là:
TXĐ: $D=R$
Ta có: $f'\left( x \right) = \dfrac{{8{{\text{x}}^2} - 12{\text{x}} - 8}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$f'\left( x \right) = 0 \Leftrightarrow x = 2$ hoặc $x = - \dfrac{1}{2}$
$\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to - \infty } y = 0$
Bảng biến thiên
Vậy giá trị lớn nhất của hàm số là $y = 8$ tại $x = - \dfrac{1}{2}$
Gọi giá trị lớn nhất và nhỏ nhất của hàm số $y = {x^4} + 2{x^2} - 1$ trên đoạn $\left[ { - 1;2} \right]$ lần lượt là $M$ và $m$. Khi đó giá trị của $M.m$ là:
TXĐ: $D=R$
Ta có: $y' = 4{{\text{x}}^3} + 4{\text{x}}$$ \Rightarrow y' = 0 \Leftrightarrow x = 0 \in \left[ { - 1;2} \right]$
$f( - 1) = 2,{\text{ f(0) = }} - 1,{\text{ f(2) = 23}}$
Ta thấy GTLN và GTNN lần lượt là $M = 23,m = - 1 \Rightarrow M.m = 23.\left( { - 1} \right) = - 23$
Cho hàm số $y = x + \dfrac{1}{x}.$ Giá trị nhỏ nhất của hàm số trên khoảng $\left( {0;\, + \infty } \right)$ là:
TXĐ: \(R\backslash \left\{ 0 \right\}\)
$y' = 1 - \dfrac{1}{{{x^2}}} = \dfrac{{{x^2} - 1}}{{{x^2}}}$
$y' = 0 \Leftrightarrow \dfrac{{{x^2} - 1}}{{{x^2}}} = 0 \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow x=1 (tm) $ hoặc $x=-1 (ktm)$
Bảng biến thiên:
$ \Rightarrow \mathop {Min}\limits_{x \in \left( {0; + \infty } \right)} \,y = f\left( 1 \right) = 2$
Một công ty bất động sản có $50$ căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá $2.000.000$ đồng một tháng thì mọi căn hộ đều có người thuê. Mỗi một căn hộ không thuê nữa (bỏ trống) thì công ty lại phải tăng số tiền thuê của những căn hộ còn lại thêm $50.000$ đồng. Công ty đã tìm ra phương án cho thuê đạt lợi nhuận lớn nhất. Hỏi thu nhập cao nhất công ty có thể đạt được trong một tháng là bao nhiêu?
Ở tháng thu nhập của công ty cao nhất, gọi số căn hộ bị bỏ trống là \(x\) thì số tiền thuê mỗi phòng là \(2.000.000 + 50.000x\), khi đó số tiền thu được là
\(f\left( x \right) = \left( {2.000.000 + 50.000x} \right)\left( {50 - x} \right)\)\( = - 50.000{x^2} + 500.000x + 100.000.000\).
Ta cần tìm \(x \in \left( {0;\,50} \right)\) để \(f\left( x \right)\) lớn nhất.
Ta có \(f'\left( x \right) = - 100.000x + 500.000\), \(f'\left( x \right) = 0 \Leftrightarrow x = 5\)
Bảng biến thiên:
Vậy mỗi tháng lợi nhuận cao nhất thu được của công ty là $101.250.000$
Cho hàm số $y = \dfrac{{2mx + 1}}{{m - x}}.$ Giá trị lớn nhất của hàm số trên $\left[ {2;3} \right]$ bằng $\dfrac{{ - 1}}{3}$ khi m bằng:
\(D = \mathbb{R}\backslash \left\{ m \right\}{\rm{ }} \Rightarrow {\rm{m}} \notin \left[ {2;3} \right]\)
\(\begin{array}{l}y = \dfrac{{2mx + 1}}{{ - x + m}}\\ \Rightarrow y' = \dfrac{{2m\left( { - x + m} \right) + 1.\left( {2mx + 1} \right)}}{{{{\left( { - x + m} \right)}^2}}} = \dfrac{{2{m^2} + 1}}{{{{\left( { - x + m} \right)}^2}}} > 0\,,\forall x \in \left[ {2;3} \right]\end{array}\)
Hàm số luôn đồng biến trên \(\left[ {2;3} \right]\)
\(\begin{array}{l} \Rightarrow Max\,y = f\left( 3 \right) = \dfrac{{6m + 1}}{{m - 3}}\\Max\,y = \dfrac{{ - 1}}{3} \Leftrightarrow \dfrac{{6m + 1}}{{m - 3}} = \dfrac{{ - 1}}{3} \Leftrightarrow 18m + 3 = - m + 3 \Leftrightarrow 19m = 0 \Leftrightarrow m = 0(TMDK)\end{array}\)