Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\). Khi đó \(d \equiv d'\) nếu:
\(d \equiv d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đôi một cùng phương \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] = \overrightarrow 0 \)
Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = - 1 + 3t\\y = - t\\z = 1 - 2t\end{array} \right.\) và \({d_2}:\dfrac{{x - 1}}{{ - 3}} = \dfrac{{y - 2}}{1} = \dfrac{{z - 3}}{2}\).
Vị trí tương đối của \({d_1}\) và \({d_2}\) là:
Đường thẳng \({d_1}\) đi qua \({M_1}\left( { - 1;0;1} \right)\) và có VTCP \(\overrightarrow {{u_1}} = \left( {3; - 1; - 2} \right)\).
Đường thẳng \({d_2}\) đi qua \({M_2}\left( {1;2;3} \right)\) và có VTCP \(\overrightarrow {{u_2}} = \left( { - 3;1;2} \right)\).
Ta có \(\dfrac{3}{{ - 3}} = \dfrac{{ - 1}}{1} = \dfrac{{ - 2}}{2}\) nên \(\overrightarrow {{u_1}} \parallel \overrightarrow {{u_2}} \). \(\left( 1 \right)\)
\(\dfrac{{ - 1 - 1}}{{ - 3}} \ne \dfrac{{0 - 2}}{1} \ne \dfrac{{1 - 3}}{2}\) nên \({M_1} \notin {d_2}\). \(\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\), suy ra \({d_1}\) và \({d_2}\) song song.
Điều kiện cần và đủ để hai đường thẳng cắt nhau là:
\(d\) cắt \(d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} \) không cùng phương và \(\overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đồng phẳng \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0\end{array} \right.\)
Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng
\({d_1}:\dfrac{{x - 3}}{1} = \dfrac{{y - 2}}{2} = \dfrac{{z - 1}}{1}\) và \({d_2}:\left\{ \begin{array}{l}x = t\\y = 2\\z = 2 + t\end{array} \right.\).
Vị trí tương đối của \({d_1}\) và \({d_2}\) là:
Đường thẳng \({d_1}\) đi qua \({M_1}\left( {3;2;1} \right)\) và có VTCP \(\overrightarrow {{u_1}} = \left( {1;2;1} \right)\).
Đường thẳng \({d_2}\) đi qua \({M_2}\left( {0;2;2} \right)\) và có VTCP \(\overrightarrow {{u_2}} = \left( {1;0;1} \right)\).
Ta có \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {2;0; - 2} \right)\), \(\overrightarrow {{M_1}{M_2}} = \left( { - 3;0;1} \right)\).
Suy ra \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} = - 6 + 0 - 2 = - 8 \ne 0\).
Do đó \({d_1}\) và \({d_2}\) chéo nhau.
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\left\{ \begin{array}{l}x = - 1 + 2t\\y = - t\\z = - 2 - t\end{array} \right.\). Trong các đường thẳng sau, đường thẳng nào vuông góc với \(d\)?
Đường thẳng \({d_1}\) có VTCP \({\overrightarrow u _{_1}} = \left( {3;1;5} \right)\), đường thẳng \(d\) có VTCP \({\overrightarrow u _{_d}} = \left( {2; - 1; - 1} \right)\).
Vì \({\overrightarrow u _{_d}}.{\overrightarrow u _{_1}} = 3.2 - 1.1 - 5.1 = 0\).
Công thức tính khoảng cách từ điểm \(A\) đến đường thẳng \(d'\) đi qua điểm \(M'\) và có VTCP \(\overrightarrow {u'} \) là:
Khoảng cách từ điểm \(A\) đến đường thẳng \(d'\) được tính theo công thức \(d\left( {A,d'} \right) = \dfrac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\left| {\overrightarrow {u'} } \right|}}\)
Khoảng cách từ điểm \(M\left( {2;0;1} \right)\) đến đường thẳng $\Delta :\dfrac{{x - 1}}{1} = \dfrac{y}{2} = \dfrac{{z - 2}}{1}$ là:
Đường thẳng \(\Delta \) đi qua \(A\left( {1;0;2} \right)\) và có VTCP \(\overrightarrow u = \left( {1;2;1} \right)\). Khi đó:
\(\overrightarrow {MA} = \left( { - 1;0;1} \right),\overrightarrow u = \left( {1;2;1} \right) \)
$\Rightarrow \left[ {\overrightarrow {MA} ,\overrightarrow u } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\2\end{array}&\begin{array}{l}1\\1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\1\end{array}&\begin{array}{l} - 1\\1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l} - 1\\1\end{array}&\begin{array}{l}0\\2\end{array}\end{array}} \right|} \right) = \left( { - 2;2; - 2} \right)$
Vậy $d\left( {M,\Delta } \right) = \dfrac{{\left| {\left[ {\overrightarrow {MA} ,\overrightarrow u } \right]} \right|}}{{\left| {\overrightarrow u } \right|}} = \dfrac{{\sqrt {{2^2} + {2^2} + {2^2}} }}{{\sqrt {{1^2} + {2^2} + {1^2}} }} = \sqrt 2 $
Cho hai điểm \(A\left( {1; - 2;0} \right),B\left( {0;1;1} \right)\), độ dài đường cao \(OH\) của tam giác \(OAB\) là:
Ta có: \(\overrightarrow {OA} = \left( {1; - 2;0} \right),\overrightarrow {AB} = \left( { - 1;3;1} \right)\)
$ \Rightarrow \left[ {\overrightarrow {OA} ,\overrightarrow {AB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l} - 2\\3\end{array}&\begin{array}{l}0\\1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\1\end{array}&\begin{array}{l}1\\ - 1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\ - 1\end{array}&\begin{array}{l} - 2\\3\end{array}\end{array}} \right|} \right) = \left( { - 2; - 1;1} \right)$
Do đó \(OH = d\left( {O,AB} \right) = \dfrac{{\left| {\left[ {\overrightarrow {OA} ,\overrightarrow {AB} } \right]} \right|}}{{\left| {\overrightarrow {AB} } \right|}} = \dfrac{{\sqrt {{2^2} + {1^2} + {1^2}} }}{{\sqrt {{1^2} + {3^2} + {1^2}} }} = \dfrac{{\sqrt {66} }}{{11}}\)
Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng
\({d_1}:\left\{ \begin{array}{l}x = 1 + t\\y = 0\\z = - 5 + t\end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l}x = 0\\y = 4 - 2t'\\z = 5 + 3t'\end{array} \right.\).
Phương trình đường vuông góc chung của \({d_1}\) và \({d_2}\) là:
Gọi \(M\left( {1 + t;0;t - 5} \right) \in {d_1}\), \(N\left( {0;4 - 2t';5 + 3t'} \right) \in {d_2}\).
Suy ra \(\overrightarrow {MN} = \left( { - 1 - t;4 - 2t';10 + 3t' - t} \right)\).
Đường thẳng \({d_1}\) có VTCP \(\overrightarrow a = \left( {1;0;1} \right)\), \({d_2}\) có VTCP \(\overrightarrow b = \left( {0; - 2;3} \right)\).
Để \(MN\) là đoạn vuông góc chung thì \(\left\{ \begin{array}{l}\overrightarrow {MN} .\overrightarrow a = 0\\\overrightarrow {MN} .\overrightarrow b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 3\\t' = - 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}M\left( {4;0; - 2} \right)\,\\N\left( {0;6;2} \right)\end{array} \right.\).
Phương trình đường vuông góc chung là \(MN:\dfrac{{x - 4}}{{ - 2}} = \dfrac{y}{3} = \dfrac{{z + 2}}{2}\).
Khoảng cách giữa hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 2 + 2t\\y = - 1 + t\\z = 1\end{array} \right.,{d_2}:\left\{ \begin{array}{l}x = 1\\y = 1 + t\\z = 3 - t\end{array} \right.\) là:
Đường thẳng \({d_1}\) đi qua \({M_1}\left( {2; - 1;1} \right)\) và có VTCP \(\overrightarrow {{u_1}} = \left( {2;1;0} \right)\).
Đường thẳng \({d_2}\) đi qua \({M_2}\left( {1;1;3} \right)\) và có VTCP \(\overrightarrow {{u_2}} = \left( {0;1; - 1} \right)\).
Suy ra \(\overrightarrow {{M_1}{M_2}} = \left( { - 1;2;2} \right);\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\1\end{array}&\begin{array}{l}0\\ - 1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\ - 1\end{array}&\begin{array}{l}2\\0\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}2\\0\end{array}&\begin{array}{l}1\\1\end{array}\end{array}} \right|} \right) = \left( { - 1;2;2} \right)\)
Vậy \(d\left( {{d_1},{d_2}} \right) = \dfrac{{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} } \right|}}{{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]} \right|}} = \dfrac{{\left| {\left( { - 1} \right).\left( { - 1} \right) + 2.2 + 2.2} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }} = 3\)
Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng
\({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y + 2}}{{ - 1}} = \dfrac{{z - 3}}{1}\), \({d_2}:\left\{ \begin{array}{l}x = 1 - t\\y = 1 + 2t\\z = - 1 + t\end{array} \right.\) và điểm \(A\left( {1;2;3} \right)\).
Đường thẳng \(\Delta \) qua \(A\), vuông góc với \({d_1}\) và cắt \({d_2}\) có phương trình là:
Đường thẳng \({d_1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {2; - 1;1} \right)\).
Gọi \(B = \Delta \cap {d_2}\) suy ra \(B \in {d_2}\) nên \(B\left( {1 - t;1 + 2t; - 1 + t} \right)\).
Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow {AB} = \left( { - t;2t - 1;t - 4} \right)\).
Theo giả thiết, ta có \(\Delta \bot {d_1}\) nên \(\overrightarrow {AB} .\overrightarrow {{u_1}} = 0 \Leftrightarrow 2\left( { - t} \right) - 1\left( {2t - 1} \right) + \left( {t - 4} \right) = 0 \Leftrightarrow t = - 1 \Rightarrow B\left( {2; - 1; - 2} \right)\).
Khi đó \(\Delta \) đi qua hai điểm \(A\left( {1;2;3} \right)\) và \(B\left( {2; - 1; - 2} \right)\) nên $\vartriangle :\dfrac{{x - 1}}{1} = \dfrac{{y - 2}}{{ - 3}} = \dfrac{{z - 3}}{{ - 5}}$.
Góc giữa hai đường thẳng có các VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} \) thỏa mãn:
Góc giữa hai đường thẳng có các VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} \): $\cos \varphi = \left| {\cos \left( {\overrightarrow u ,\overrightarrow {u'} } \right)} \right| = \dfrac{{\left| {\overrightarrow u .\overrightarrow {u'} } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow {u'} } \right|}}$
Cho hình lập phương \(A\left( {0;0;0} \right),B\left( {1;0;0} \right),D\left( {0;1;0} \right),A'\left( {0;0;1} \right)\). Gọi \(M,N\) lần lượt là trung điểm của \(AB,CD\). Khoảng cách giữa \(MN\) và \(A'C\) là:
Gọi \(C\left( {x;y;z} \right)\) ta có:
\(\overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ \begin{array}{l}1 - 0 = x - 0\\0 - 0 = y - 1\\0 - 0 = z - 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\\z = 0\end{array} \right. \Rightarrow C\left( {1;1;0} \right)\)
Lại có
\(\begin{array}{l}M\left( {\dfrac{1}{2};0;0} \right),N\left( {\dfrac{1}{2};1;0} \right) \Rightarrow \overrightarrow {MN} = \left( {0;1;0} \right),\overrightarrow {A'C} = \left( {1;1; - 1} \right),\overrightarrow {MA'} = \left( { - \dfrac{1}{2};0;1} \right)\\ \Rightarrow \left[ {\overrightarrow {MN} ,\overrightarrow {A'C} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\1\end{array}&\begin{array}{l}0\\ - 1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\ - 1\end{array}&\begin{array}{l}0\\1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\1\end{array}&\begin{array}{l}1\\1\end{array}\end{array}} \right|} \right) = \left( { - 1;0; - 1} \right)\end{array}\)
Vậy \(d\left( {MN,A'C} \right) = \dfrac{{\left| {\left[ {\overrightarrow {MN} ,\overrightarrow {A'C} } \right].\overrightarrow {MA'} } \right|}}{{\left| {\left[ {\overrightarrow {MN} ,\overrightarrow {A'C} } \right]} \right|}} = \dfrac{{\left| {\left( { - 1} \right).\left( { - \dfrac{1}{2}} \right) + 0.0 + \left( { - 1} \right).1} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {0^2} + {{\left( { - 1} \right)}^2}} }} = \dfrac{1}{{2\sqrt 2 }} = \dfrac{{\sqrt 2 }}{4}\)
Trong không gian với hệ tọa độ \(Oxyz\), cho các điểm \(A\left( {0;0;2} \right)\), \(B\left( {1;0;0} \right)\), \(C\left( {2;2;0} \right)\) và \(D\left( {0;m;0} \right)\). Điều kiện cần và đủ của \(m\) để khoảng cách giữa hai đường thẳng \(AB\) và \(CD\) bằng \(2\) là:
Ta có \(\overrightarrow {AB} = \left( {1;0; - 2} \right)\), \(\overrightarrow {CD} = \left( { - 2;m - 2;0} \right)\) và \(\overrightarrow {AC} = \left( {2;2; - 2} \right)\).
Suy ra \(\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right] = \left( {2m - 4;4;m - 2} \right)\).
Do đó \(d\left[ {AB,CD} \right] = \dfrac{{\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right].\overrightarrow {AC} } \right|}}{{\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right]} \right|}} \Leftrightarrow \dfrac{{\left| {2\left( {2m - 4} \right) + 8 - 2\left( {m - 2} \right)} \right|}}{{\sqrt {{{\left( {2m - 4} \right)}^2} + {4^2} + {{\left( {m - 2} \right)}^2}} }} = 2\)
\( \Leftrightarrow \left| {2m + 4} \right| = 2\sqrt {5{m^2} - 20m + 36} \Leftrightarrow \left[ \begin{array}{l}m = 4\\m = 2\end{array} \right.\).
Trong không gian với hệ tọa độ $Oxyz$, cho đường thẳng $d$ có phương trình \(\dfrac{{x - 1}}{3} = \dfrac{{y + 2}}{2} = \dfrac{{z - 3}}{{ - 4}}\) và \(d':\dfrac{{x + 1}}{4} = \dfrac{y}{1} = \dfrac{{z + 1}}{2}\) . Điểm nào sau đây không thuộc đường thẳng $d$ nhưng thuộc đường thẳng \(d'\)?
A: \(\dfrac{{4 - 1}}{3} = \dfrac{{0 + 2}}{2} = \dfrac{{ - 1 - 3}}{{ - 4}} = 1 \Rightarrow N \in d\)
B:\(\dfrac{{1 - 1}}{3} = \dfrac{{ - 2 + 2}}{2} = \dfrac{{3 - 3}}{{ - 4}} = 0 \Rightarrow M \in d\)
C: \(\dfrac{{7 - 1}}{3} = \dfrac{{2 + 2}}{2} \ne \dfrac{{1 - 3}}{{ - 4}} \Rightarrow P \notin d\) và \(\dfrac{{7 + 1}}{4} = \dfrac{2}{1} \ne \dfrac{{1 + 1}}{2} \Rightarrow P \notin d'\)
D: \(\dfrac{{7 - 1}}{3} = \dfrac{{2 + 2}}{2} \ne \dfrac{{3 - 3}}{{ - 4}} \Rightarrow Q \notin d\) và \(\dfrac{{7 + 1}}{4} = \dfrac{2}{1} = \dfrac{{3 + 1}}{2} \Rightarrow Q \in d'\)
Giao điểm của hai đường thẳng \(d:\left\{ \begin{array}{l}x = - 3 + 2t\\y = - 2 + 3t\\z = 6 + 4t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 5 + t'\\y = - 1 - 4t'\\z = 20 + t'\end{array} \right.\) có tọa độ là
Gọi \(M = d \cap d';\) do \(M \in d \Rightarrow M\left( { - 3 + 2t; - 2 + 3t;6 + 4t} \right)\)
\(M \in d' \Rightarrow \left\{ \begin{array}{l} - 3 + 2t = 5 + t'\\ - 2 + 3t = - 1 - 4t'\\6 + 4t = 20 + t'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 3\\t' = -2\end{array} \right. \Rightarrow M\left( {3;7;18} \right)\)
Trong không gian với hệ toạ độ $Oxyz$, cho đường thẳng \(d:\dfrac{{x - 3}}{2} = \dfrac{{y + 1}}{1} = \dfrac{{z - 1}}{2}\) và điểm $M(1;2;-3)$. Toạ độ hình chiếu vuông góc của điểm $M$ lên đường thẳng $d$ là
Gọi \(M'\) là hình chiếu của \(M\) trên \(d\).
$d$ có vectơ chỉ phương \({\vec u_d} = (2;1;2)\).
\(M'(3 + 2t; - 1 + t;1 + 2t) \Rightarrow \overrightarrow {MM'} = (2 + 2t; - 3 + t;4 + 2t)\)
Tacó\(MM' \bot d\) nên
\(\overrightarrow {MM'} .{\vec u_d} = 0 \Leftrightarrow (2 + 2t).2 + ( - 3 + t).1 + (4 + 2t).2 = 0 \Leftrightarrow 9t + 9 = 0 \Leftrightarrow t = - 1 \)
$\Rightarrow M'(1; - 2; - 1)$.
Trong không gian với hệ tọa độ $Oxyz$, cho 2 đường thẳng $d:\dfrac{{x - 2}}{{ - 3}} = \dfrac{{y + 2}}{1} = \dfrac{{z + 1}}{{ - 2}}$ và $d':\dfrac{x}{6} = \dfrac{{y - 4}}{{ - 2}} = \dfrac{{z - 2}}{4}$. Mệnh đề nào sau đây là đúng?
Ta có:
$\begin{array}{l}\overrightarrow {{u_d}} ( - 3;1; - 2);\overrightarrow {{u_{d'}}} (6; - 2;4) \Rightarrow \overrightarrow {{u_{d'}}} = - 2\overrightarrow {{u_d}} \\A(2; - 2; - 1) \in d; \notin d'\\ \Rightarrow d//d'\end{array}$
Trong không gian \(Oxyz\), cho đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 1 + t\\y = 2 + t\\z = 3\end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l}x = 1\\y = 2 + 7t\\z = 3 + t\end{array} \right.\). Phương trình đường phân giác của góc nhọn giữa \({d_1}\) và \({d_2}\) là:
\({d_1}:\left\{ \begin{array}{l}x = 1 + t\\y = 2 + t\\z = 3\end{array} \right.\) có 1 VTCP là \(\overrightarrow {{u_1}} = \left( {1;1;0} \right),\,\,\left| {\overrightarrow {{u_1}} } \right| = \sqrt 2 \)
\({d_2}:\left\{ \begin{array}{l}x = 1\\y = 2 + 7t\\z = 3 + t\end{array} \right.\) có 1 VTCP là \(\overrightarrow {{u_2}} = \left( {0;7;1} \right),\,\,\left| {\overrightarrow {{u_2}} } \right| = 5\sqrt 2 \)
Ta có: \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0 + 7 + 0 > 0 \Rightarrow \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right) < {90^0}\)
\( \Rightarrow \)Đường phân giác góc nhọn giữa \({d_1}\) và \({d_2}\) có 1 VTCP \(\overrightarrow u = 5.\overrightarrow {{u_1}} + \overrightarrow {{u_2}} = \left( {5;12;1} \right)\)
Giải hệ phương trình \(\left\{ \begin{array}{l}1 + t = 1\\2 + t = 2 + 7t'\\3 = 3 + t'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 0\\t' = 0\end{array} \right. \Rightarrow \) \({d_1}\) cắt \({d_2}\) tại điểm \(A\left( {1;2;3} \right)\)
Phương trình đường phân giác của góc nhọn giữa \({d_1}\) và \({d_2}\) là: \(\dfrac{{x - 1}}{5} = \dfrac{{y - 2}}{{12}} = \dfrac{{z - 3}}{1}\).
Trong không gian \(Oxyz,\) cho hai điểm \(M\left( { - 2; - 2;1} \right),A\left( {1;2; - 3} \right)\) và đường thẳng \(d:\dfrac{{x + 1}}{2} = \dfrac{{y - 5}}{2} = \dfrac{z}{{ - 1}}.\) Gọi \(\Delta \) là đường thẳng qua \(M,\) vuông góc với đường thẳng \(d,\) đồng thời cách điểm \(A\) một khoảng bé nhất. Khoảng cách bé nhất đó là
Gọi \(\left( P \right)\) là mặt phẳng qua \(M\left( { - 2; - 2;1} \right)\) và nhận \(\overrightarrow {{u_d}} = \left( {2;2; - 1} \right)\) làm VTPT
Phương trình mặt phẳng \(\left( P \right):2\left( {x + 2} \right) + 2\left( {y + 2} \right) - \left( {z - 1} \right) = 0\) \( \Leftrightarrow 2x + 2y - z + 9 = 0\)
Suy ra \(\Delta \subset \left( P \right)\). Khi đó ta có \(d\left( {A,\Delta } \right) \ge d\left( {A,\left( P \right)} \right)\)
Lại có \(d\left( {A,\left( P \right)} \right) = \dfrac{{\left| {2.1 + 2.2 - \left( { - 3} \right) + 9} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = 6\)
Vậy khoảng cách nhỏ nhất là \(d = 6.\)