Phương trình đường thẳng

Kỳ thi ĐGTD ĐH Bách Khoa

Đổi lựa chọn

Câu 1 Trắc nghiệm

Đường thẳng đi qua điểm \(\left( { - {x_0}; - {y_0}; - {z_0}} \right)\) và có VTCP \(\left( { - a; - b; - c} \right)\) có phương trình:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đường thẳng đi qua điểm \(\left( { - {x_0}; - {y_0}; - {z_0}} \right)\) và có VTCP \(\left( { - a; - b; - c} \right)\) có phương trình:

\(\dfrac{{x - \left( { - {x_0}} \right)}}{{ - a}} = \dfrac{{y - \left( { - {y_0}} \right)}}{{ - b}} = \dfrac{{z - \left( { - {z_0}} \right)}}{{ - c}} \Leftrightarrow \dfrac{{x + {x_0}}}{a} = \dfrac{{y + {y_0}}}{b} = \dfrac{{z + {z_0}}}{c}\)

Câu 2 Trắc nghiệm

Cho đường thẳng \(d:\left\{ \begin{array}{l}x =  - t\\y = 1 - t\\z = t\end{array} \right.\left( {t \in \mathbb{R}} \right)\). Điểm nào trong các điểm dưới đây thuộc đường thẳng \(d\)?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì \(d:\left\{ \begin{array}{l}x =  - t\\y = 1 - t\\z = t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0 - t\\y = 1 - t\\z = 0 + t\end{array} \right.\left( {t \in \mathbb{R}} \right)\) nên \(d\) đi qua điểm \(\left( {0;1;0} \right)\).

Ngoài ra các điểm ở mỗi đáp án A, B, C đều không thỏa mãn phương trình của \(d\) nên chỉ có đáp án D đúng.

Câu 3 Trắc nghiệm

Điểm nào sau đây nằm trên đường thẳng \(\dfrac{{x + 1}}{2} = \dfrac{{y - 2}}{{ - 2}} = \dfrac{z}{1}\)?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Lần lượt thay tọa độ các điểm vào phương trình ta được:

\(\dfrac{{0 + 1}}{2} = \dfrac{{1 - 2}}{{ - 2}} \ne \dfrac{2}{1}\) nên A sai.

\(\dfrac{{1 + 1}}{2} = \dfrac{{0 - 2}}{{ - 2}} = \dfrac{1}{1}\) nên B đúng.

Thay tọa độ các điểm đáp án \(C,D\) vào đường thẳng ta thấy đều không thỏa mãn.

Câu 4 Trắc nghiệm

Cho đường thẳng \(d:\dfrac{{x - 1}}{2} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{{z + 1}}{2}\) và các điểm \(A\left( {1;1; - 1} \right),B\left( { - 1; - 1;1} \right),C\left( {2;\dfrac{1}{2};0} \right)\). Chọn mệnh đề đúng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có:

\(\begin{array}{l}\dfrac{{1 - 1}}{2} = \dfrac{{1 - 1}}{{ - 1}} = \dfrac{{ - 1 + 1}}{2} = 0 \Rightarrow A \in d\\\dfrac{{ - 1 - 1}}{2} \ne \dfrac{{ - 1 - 1}}{{ - 1}} \ne \dfrac{{1 + 1}}{2} \Rightarrow B \notin d\\\dfrac{{2 - 1}}{2} = \dfrac{{\dfrac{1}{2} - 1}}{{ - 1}} = \dfrac{{0 + 1}}{2} = \dfrac{1}{2} \Rightarrow C \in d\end{array}\)

Do đó cả hai điểm \(A\) và \(C\) đều thuộc \(d\).

Câu 5 Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\left\{ \begin{array}{l}x = 1\\y = 2 + 3t\\z = 5 - t\end{array} \right.\left( {t \in R} \right)\). Vectơ nào dưới đây là vectơ chỉ phương của \(d\)?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \(d:\left\{ \begin{array}{l}x = 1\\y = 2 + 3t\\z = 5 - t\end{array} \right.\left( {t \in R} \right) \Rightarrow d:\left\{ \begin{array}{l}x = 1 + 0t\\y = 2 + 3t\\z = 5 - t\end{array} \right.\left( {t \in R} \right) \Rightarrow \overrightarrow u  = \left( {0;3; - 1} \right)\)

Câu 6 Trắc nghiệm

Trong không gian $Oxyz$, tìm phương trình tham số trục $Oz$?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Phương trình trục \(Oz:\left\{ \begin{array}{l}x = 0\\y = 0\\z = t\end{array} \right.\left( {t \in \mathbb{R}} \right)\)

Câu 7 Trắc nghiệm

Trong không gian $Oxyz$, điểm nào sau đây thuộc trục $Oy$?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Phương trình trục \(Oy:\left\{ \begin{array}{l}x = 0\\y = t\\z = 0\end{array} \right.\left( {t \in \mathbb{R}} \right)\). Do đó chỉ có điểm $N\left( {0,1,0} \right)$ thuộc trục \(Oy\)

Câu 8 Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, phương trình nào dưới đây là phương trình chính tắc của đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3t\\z =  - 2 + t\end{array} \right.\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có: \(d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3t\\z =  - 2 + t\end{array} \right. \Rightarrow \left\{ \begin{array}{l}M\left( {1;0; - 2} \right)\\\overrightarrow u  = \left( {2;3;1} \right)\end{array} \right. \Rightarrow \dfrac{{x - 1}}{2} = \dfrac{y}{3} = \dfrac{{z + 2}}{1}\)

Câu 9 Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$,  phương trình tham số của đường thẳng \(\Delta :\dfrac{{x - 4}}{1} = \dfrac{{y + 3}}{2} = \dfrac{{z - 2}}{{ - 1}}.\) là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

\(\Delta :\dfrac{{x - 4}}{1} = \dfrac{{y + 3}}{2} = \dfrac{{z - 2}}{{ - 1}}\) đi qua \(M\left( {4; - 3;2} \right)\) và nhận \(\overrightarrow u  = \left( {1;2; - 1} \right)\)  làm VTCP nên \(\Delta :\left\{ \begin{array}{l}x = 4 + t\\y =  - 3 + 2t\\z = 2 - t\end{array} \right.\left( {t \in \mathbb{R}} \right)\)

Câu 10 Trắc nghiệm

Trong không gian với hệ trục $Oxyz$, cho đường thẳng \(d\) đi qua điểm $M\left( {2,0, - 1} \right)$ và có vecto chỉ phương \(\vec a = (4, - 6,2)\). Phương trình tham số của đường thẳng d là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có \(\vec a = \left( {4; - 6;2} \right) = 2\left( {2; - 3;1} \right)\)  nên chọn \(\vec u = \left( {2; - 3;1} \right)\) là vecto chỉ phương của \(d\).

Phương trình đường thẳng $d$ đi qua điểm $M\left( {2,0, - 1} \right)$ và có vecto chỉ phương \(\vec u = \left( {2; - 3;1} \right)\) là \(\left\{ \begin{array}{l}x = 2 + 2t\\y =  - 3t\\z =  - 1 + t\end{array} \right.\)

Câu 11 Trắc nghiệm

Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm $A\left( {1,2, - 3} \right)$ và $B\left( {3, - 1,1} \right)$?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Phương trình đường thẳng $AB$ nhận \(\overrightarrow {AB}  = \left( {2; - 3;4} \right)\) là vectơ chỉ phương. Loại B, C.

Phương trình qua $A\left( {1,2, - 3} \right)$ nên có dạng \(\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{{ - 3}} = \dfrac{{z + 3}}{4}\).

Câu 12 Trắc nghiệm

Trong không gian $Oxyz$, cho tam giác $OAB$ với \(A\left( {1;1;2} \right),\;B\left( {3; - 3;0} \right)\). Phương trình đường trung tuyến $OI$ của tam giác $OAB$ là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có \(I\) là trung điểm của \(AB\). Suy ra $I\left( {2, - 1,1} \right)$.

Ta có \(OI\)  nhận \(\overrightarrow {OI}  = \left( {2; - 1;1} \right)\) là vectơ chỉ phương và đi qua điểm $O\left( {0,0,0} \right)$ nên \(d:\dfrac{x}{2} = \dfrac{y}{{ - 1}} = \dfrac{z}{1}\).

Câu 13 Trắc nghiệm

Trong không gian $Oxyz$, cho hình bình hành $ABCD$ với  $A\left( {0,1,1} \right),{\rm{ }}B\left( { - 2,3,1} \right)$ và $C\left( {4, - 3,1} \right)$. Phương trình nào không phải là phương trình tham số của đường chéo $BD$.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi \(I\)  là tâm của hình bình hành $ABCD$. Suy ra \(I\) là trung điểm của $AC$. Ta có $I\left( {2, - 1,1} \right)$.

Phương trình $BI$ cũng chính là phương trình đường chéo $BD$.

+ Phương trình $BI$ nhận \(\overrightarrow {BI}  = (4, - 4,0)\) là vectơ chỉ phương

+ qua điểm $B\left( { - 2,3,1} \right)$ và cũng qua điểm $I\left( {2, - 1,1} \right)$.

Vì phương trình tham số ở câu D có vecto chỉ phương là \((1,1,0)\), đây không là vecto chỉ phương của $BI$.

Câu 14 Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho điểm $A\left( {2,1,3} \right)$ và đường thẳng \(d':\dfrac{{x - 1}}{3} = \dfrac{{y - 2}}{1} = \dfrac{z}{1}\) . Gọi \(d\)  là đường thẳng đi qua \(A\)  và song song \(d'\). Phương trình nào sau đây không phải là phương trình đường thẳng \(d\)?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Phương trình đường thẳng \(d\) có vecto chỉ phương là \(\vec u = (3,1,1)\) và đi qua điểm $A\left( {2,1,3} \right)$ nên có phương trình \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + t\\z = 3 + t\end{array} \right.\)

+ Phương án A đúng.

+ Với $t =  - 1$ ta có $B\left( { - 1,0,2} \right)$ thuộc \(d\) . Do đó B đúng.

+ Với $t = 1$, ta có $C\left( {5,2,4} \right)$ thuộc \(d\) . Do đó C đúng.

Câu 15 Trắc nghiệm

Phương trình đường thẳng d đi qua điểm $A(1;2; - 3)$ và song song với trục $Oz$ là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Vì $d//Oz$ nên ta có \(\overrightarrow {{u_d}}  = \vec k = (0,0,1)\). Vì \(d\) qua $A\left( {1,2, - 3} \right)$ nên \(d\) có phương trình \(\left\{ \begin{array}{l}x = 1\\y = 2\\z =  - 3 + t\end{array} \right.\)(*)

Đối chiếu kết quả các đáp án ta thấy:

+ A,B, D sai vecto chỉ phương.

+ Đáp án C đúng vecto chỉ phương \(\overrightarrow {{u_d}} \). Kiểm tra điểm $B\left( {1,2,3} \right)$ thuộc (*) nên C đúng.

Câu 16 Trắc nghiệm

Phương trình đường thẳng đi qua điểm $A\left( {1,2,3} \right)$ và vuông góc với 2 đường thẳng cho trước: \({d_1}:\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{{z + 1}}{{ - 1}}\) và \({d_2}:\dfrac{{x - 2}}{3} = \dfrac{{y - 1}}{2} = \dfrac{{z - 1}}{2}\) là: 

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có \(\overrightarrow {{u_{{d_1}}}}  = (2,1, - 1)\)  và  \(\overrightarrow {{u_{{d_2}}}}  = (3,2,2)\)

Vì $d$ vuông góc với \({d_1}\)  và \({d_2}\)  nên có \(\overrightarrow {{u_d}}  = \left[ {\overrightarrow {{u_{{d_1}}}} ,\overrightarrow {{u_{{d_2}}}} } \right] = \left( {4; - 7;1} \right)\)

Vì $d$ qua $A\left( {1,2,3} \right)$ nên có phương trình \(d:\dfrac{{x - 1}}{4} = \dfrac{{y - 2}}{{ - 7}} = \dfrac{{z - 3}}{1}\)

Câu 17 Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho các điểm $A\left( {2,0,0} \right),B\left( {0,3,0} \right),C\left( {0,0, - 4} \right)$. Gọi \(H\) là trực tâm tam giác $ABC$. Tìm phương trình tham số của đường thẳng $OH$ trong các phương án sau:  

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

\(H\)  là trực tâm của $\Delta ABC \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC}  = 0\\\overrightarrow {BH} .\overrightarrow {AC}  = 0\\\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AH}  = 0\end{array} \right.$

Ta giả sử $H\left( {x,y,z} \right)$, ta có

\(\overrightarrow {BC}  = (0, - 3, - 4)\)

\(\overrightarrow {AC}  = ( - 2,0, - 4)\)

\(\overrightarrow {AH}  = (x - 2,y,z)\)

\(\overrightarrow {BH}  = (x,y - 3,z)\)

\(\overrightarrow {AB}  = ( - 2,3,0)\).

Điều kiện \(\overrightarrow {AH} .\overrightarrow {BC}  = 0 \Leftrightarrow 3y + 4z = 0\)

Điều kiện \(\overrightarrow {BH} .\overrightarrow {AC}  = 0 \Leftrightarrow x + 2z = 0\)

Ta tính \([\overrightarrow {AB} ,\overrightarrow {AC} ] = ( - 12, - 8,6)\).

Điều kiện \([\overrightarrow {AB} ,\overrightarrow {AC} ].\overrightarrow {AH}  = 0 \Leftrightarrow  - 12(x - 2) - 8y + 6z = 0 \Leftrightarrow  - 6x - 4y + 3z + 12 = 0\)

Giải hệ \(\left\{ {\begin{array}{*{20}{l}}{3y + 4z = 0}&{}\\{x + 2z = 0}&{}\\{ - 6x - 4y + 3z + 12 = 0}&{}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \dfrac{{72}}{{61}}}&{}\\{y = \dfrac{{48}}{{61}}}&{}\\{z = \dfrac{{ - 36}}{{61}}}&{}\end{array}} \right.\)

 

Suy ra \(H(\dfrac{{72}}{{61}},\dfrac{{48}}{{61}},\dfrac{{ - 36}}{{61}})\)

Suy ra \(\overrightarrow {OH}  = (\dfrac{{72}}{{61}},\dfrac{{48}}{{61}},\dfrac{{ - 36}}{{61}})\)  là vecto chỉ phương của $OH$.

Chọn \(\vec u = (6,4, - 3)\)  là vecto chỉ phương của $OH$ và $OH$ qua $O\left( {0,0,0} \right)$ nên phương trình tham số là \(\left\{ {\begin{array}{*{20}{l}}{x = 6t}&{}\\{y = 4t}&{}\\{z =  - 3t}&{}\end{array}} \right.\)

Câu 18 Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 + \left( {{m^2} - 2m} \right)t\\y = 5 - \left( {m - 4} \right)t\\z = 7 - 2\sqrt 2 \end{array} \right.\) và điểm \(A\left( {1;2;3} \right)\). Gọi \(S\) là tập các giá trị thực của tham số \(m\) để khoảng cách từ \(A\) đến đường thẳng \(\Delta \) có giá trị nhỏ nhất. Tổng các phần tử của \(S\) là

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Đường thẳng \(\Delta \) đi qua điểm \(M\left( {2;5;7 - 2\sqrt 2 } \right)\) và nhận \(\overrightarrow u  = \left( {{m^2} - 2m;4 - m;0} \right)\) làm VTCP.

Có \(\overrightarrow {AM}  = \left( {1;3;4 - 2\sqrt 2 } \right) \Rightarrow AM= \sqrt{34 - 16\sqrt 2} \).

Để \(d\left( {A,\Delta } \right) = A{H_{\min }}\) thì \(\sin \alpha  = \dfrac{{AH}}{{AM}}\) đạt GTNN hay \(\cos \alpha \) đạt GTLN.

Mà \(\cos \alpha  = \cos \left( {AM,\Delta } \right) = \dfrac{{\left| {\overrightarrow {AM} .\overrightarrow u } \right|}}{{\left| {\overrightarrow {AM} } \right|.\left| {\overrightarrow u } \right|}} = \dfrac{{\left| {\left( {{m^2} - 2m} \right) + 3\left( {4 - m} \right)} \right|}}{{ {\sqrt{34 - 16\sqrt 2} }.\sqrt {{{\left( {{m^2} - 2m} \right)}^2} + {{\left( {4 - m} \right)}^2}} }}\) 

Mà \(\left| {\left( {{m^2} - 2m} \right) + 3\left( {4 - m} \right)} \right| \le \sqrt {{1^2} + {3^2}} .\sqrt {{{\left( {{m^2} - 2m} \right)}^2} + {{\left( {4 - m} \right)}^2}} \)

\( \Rightarrow \dfrac{{\left| {\left( {{m^2} - 2m} \right) + 3\left( {4 - m} \right)} \right|}}{{ {\sqrt{34 - 16\sqrt 2} }.\sqrt {{{\left( {{m^2} - 2m} \right)}^2} + {{\left( {4 - m} \right)}^2}} }} \le \dfrac{{\sqrt {10} }}{{\sqrt{34 - 16\sqrt 2} }}\) 

\( \Rightarrow \cos \alpha \) đạt GTLN nếu \(\dfrac{{{m^2} - 2m}}{1} = \dfrac{{4 - m}}{3} \Leftrightarrow 3{m^2} - 6m = 4 - m \Leftrightarrow 3{m^2} - 5m - 4 = 0\)

Phương trình này có hai nghiệm phân biệt do \(ac < 0\) nên tổng các giá trị của \(m\) là \(\dfrac{5}{3}\) .

Câu 19 Trắc nghiệm

Trong không gian \(Oxyz\), cho đường thẳng \(d:\,\,\dfrac{{x - 3}}{1} = \dfrac{{y - 4}}{1} = \dfrac{{z - 5}}{{ - 2}}\) và các điểm \(A\left( {3 + m;\,\,4 + m;\,\,5 - 2m} \right)\), \(B\left( {4 - n;\,\,5 - n;\,\,3 + 2n} \right)\) với \(m,\,\,n\) là các số thực. Khẳng định nào sau đây đúng?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

- Thay tọa độ điểm \(A\left( {3 + m;\,\,4 + m;\,\,5 - 2m} \right)\) vào phương trình đường thẳng \(d\) ta có:

\(\dfrac{{3 + m - 3}}{1} = \dfrac{{4 + m - 4}}{1} = \dfrac{{5 - 2m - 5}}{{ - 2}} \Leftrightarrow m = m = m\) (luôn đúng) \( \Rightarrow A \in d\).

- Thay tọa độ điểm \(B\left( {4 - n;\,\,5 - n;\,\,3 + 2n} \right)\) vào phương trình đường thẳng \(d\) ta có:

\(\dfrac{{4 - n - 3}}{1} = \dfrac{{5 - n - 4}}{1} = \dfrac{{3 + 2n - 5}}{{ - 2}} \Leftrightarrow 1 - n = 1 - n = 1 - n\) (luôn đúng) \( \Rightarrow B \in d\).

Vậy \(A \in d,\,\,B \in d\).

Câu 20 Tự luận

Trong không gian với hệ tọa độ \(Oxyz,\) cho đường thẳng \(d:\dfrac{x+1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{2}\) và điểm \(A\left( 3;2;0 \right).\) Điểm đối xứng với điểm \(A\) qua đường thẳng \(d\) có tọa độ là $A'(a;b;c)$. Tính $a+b+c$.

Đáp án: 

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: 

Bước 1: Tìm vecto chỉ phương và tham số hóa hình chiếu M của A lên d.

Ta có:

\(d:\left\{ \begin{array}{l}x =  - 1 + t\\y =  - 3 + 2t\\z =  - 2 + 2t\end{array} \right.;\overrightarrow {{u_d}}  = \left( {1;\;2;\;2} \right)\)

Gọi \(M\) là hình chiếu vuông góc của \(A\) trên \(d\) và \({A}'\) đối xứng \(A\) qua \(d.\)

Suy ra \(M\left( m-1;2m-3;2m-2 \right)\) 

Bước 2: Biểu diễn \(\overrightarrow{AM}\) theo tham số và tìm điểm A'.

\(\overrightarrow{AM}=\left( m-4;2m-5;2m-2 \right)\)

Khi đó \(\overrightarrow{AM}.{{\vec{u}}_{d}}=0\Rightarrow \left( m-4 \right)+2\left( 2m-5 \right)+2\left( 2m-2 \right)=0\Leftrightarrow 9m=18\Leftrightarrow m=2.\)

Vậy \(M\left( 1;1;2 \right)\) và \(M\) là trung điểm \(A{A}'\) nên \({A}'\left( -1;0;4 \right).\)

Vậy $a+b+c=3$