Logarit

Kỳ thi ĐGTD ĐH Bách Khoa

Đổi lựa chọn

Câu 1 Trắc nghiệm

Điều kiện để ${\log _a}b$ có nghĩa là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện để ${\log _a}b$ có nghĩa là $0 < a \ne 1,b > 0$.

Câu 2 Trắc nghiệm

Với các số thực $a,b > 0$ bất kì; rút gọn biểu thức $P = 2{\log _2}a - {\log _{\dfrac{1}{2}}}{b^2}$

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

$P = {\log _2}{a^2} - {\log _{{2^{ - 1}}}}{b^2} = {\log _2}{a^2} + {\log _2}{b^2} = {\log _2}\left( {{a^2}{b^2}} \right) = {\log _2}{\left( {ab} \right)^2}$

Câu 3 Trắc nghiệm

Cho số thực $x$ thỏa mãn ${\log _2}\left( {{{\log }_8}x} \right) = {\log _8}\left( {{{\log }_2}x} \right).$Tính giá trị của $P = {\left( {{{\log }_2}x} \right)^2}$

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Điều kiện xác định: \(\left\{ \begin{array}{l}x > 0\\{\log _2}x > 0\\{\log _8}x > 0\end{array} \right.\)

Khi đó:

\({\log _2}\left( {{{\log }_8}x} \right) = {\log _8}\left( {{{\log }_2}x} \right) \Leftrightarrow {\log _2}\left( {\dfrac{1}{3}{{\log }_2}x} \right) = {\log _2}\sqrt[3]{{\left( {{{\log }_2}x} \right)}}\)

\( \Leftrightarrow \dfrac{1}{3}{\log _2}x = \sqrt[3]{{\left( {{{\log }_2}x} \right)}} \Leftrightarrow \dfrac{1}{{27}}\log _2^3x = {\log _2}x \Leftrightarrow {\left( {{{\log }_2}x} \right)^2} = 27\)

(vì \({\log _2}x > 0\) nên chia cả hai vế cho \({\log _2}x \ne 0\)

Câu 4 Trắc nghiệm

Chọn mệnh đề đúng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: ${\log _2}16 = {\log _2}{2^4} = 4$; ${\log _3}81 = {\log _3}{3^4} = 4$ nên ${\log _2}16 = {\log _3}81$.

Câu 5 Trắc nghiệm

Chọn mệnh đề đúng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: ${2^{{{\log }_2}3}} = 3 = {5^{{{\log }_5}3}}$ nên B đúng.

Câu 6 Trắc nghiệm

Với điều kiện các logarit đều có nghĩa, chọn mệnh đề đúng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có: ${\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c\left( {0 < a \ne 1;b,c > 0} \right)$

${\log _a}\left( {\dfrac{b}{c}} \right) = {\log _a}b - {\log _a}c\left( {0 < a \ne 1;b,c > 0} \right)$

Câu 7 Trắc nghiệm

Cho hai số thực $a$  và $b$ , với $1 < a < b$ . Khẳng định nào dưới đây là khẳng định đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có: \({\log _a}b > {\log _a}a = 1;{\log _b}a < {\log _b}b = 1 \Rightarrow {\log _b}a < 1 < {\log _a}b\)

Câu 8 Trắc nghiệm

Xét $a$ và $b$ là hai số thực dương tùy ý. Đặt \(x = \ln {({a^2} - ab + {b^2})^{1000}},\) \(y = 1000\ln a - \ln \dfrac{1}{{{b^{1000}}}}\). Khẳng định nào dưới đây là khẳng định đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có $x = \ln {\left( {{a^2} - ab + {b^2}} \right)^{1000}} = 1000\ln \left( {{a^2} - ab + {b^2}} \right)$

$y = 1000\ln a - \ln \dfrac{1}{{{b^{1000}}}} = 1000\ln a + 1000\ln b = 1000\ln ab$

Ta có ${a^2} - {\rm{a}}b + {b^2} \ge ab$ nên $\ln \left( {{a^2} - ab + {b^2}} \right) \ge \ln ab \Leftrightarrow 1000\ln \left( {{a^2} - ab + {b^2}} \right) \ge 1000\ln ab \Leftrightarrow x \ge y$

Câu 9 Trắc nghiệm

Cho $0 < x < 1;0 < a;b;c \ne 1$  và $\log_c x > 0 > \log_b x > \log_a x$ so sánh $a;b;c$  ta được kết quả:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì $0 < x < 1 \Rightarrow \ln x < 0$. Do đó

${\log _c}x > 0 > {\log _b}x > {\log _a}x $ $\Leftrightarrow \dfrac{{\ln x}}{{\ln c}} > 0 > \dfrac{{\ln x}}{{\ln b}} > \dfrac{{\ln x}}{{\ln a}}$ $ \Rightarrow \ln c < 0 < \ln a < \ln b$

Mà hàm số $y = \ln x$  đồng biến trên $\left( {0; + \infty } \right)$  nên ta suy ra $c < a < b$

Câu 10 Trắc nghiệm

Cho các phát biểu sau:

(I). Nếu \(C = \sqrt {AB} \) thì \(2\ln C = \ln A + \ln B\) với $A, B$ là các biểu thức luôn nhận giá trị dương.

(II). \(\left( {a - 1} \right){\log _a}x \ge 0 \Leftrightarrow x \ge 1\) với \(a > 0,a \ne 1\)

(III). \({m^{{{\log }_a}m}} = {n^{{{\log }_a}n}},\) với \(m,n > 0\) và \(a > 0,a \ne 1\)        

(IV).\(\mathop {\lim }\limits_{x \to  + \infty } {\log _{\frac{1}{2}}}x =  - \infty \)

Số phát biểu đúng là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có ${C^2} = AB \Rightarrow {{\mathop{\rm lnC}\nolimits} ^2} = {\mathop{\rm \ln (AB)}\nolimits}  \Rightarrow 2\ln C = \ln A + \ln B$ nên I đúng

Ta có $\left( {a - 1} \right){\log _a}x \ge 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{a - 1 > 0}\\{{{\log }_a}x \ge 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{a - 1 < 0}\\{{{\log }_a}x \le 0}\end{array}} \right.}\end{array}} \right. $ $\Leftrightarrow x\ge 1$ suy ra II đúng.

Logarit cơ số $m$ hai vế ta được ${\log _a}m.{\log _m}m \ne {\log _a}n.{\log _m}n$ suy ra III sai

Ta có $\mathop {\lim }\limits_{x \to  + \infty } {\log _{\frac{1}{2}}}x =  - \infty $ đúng nên IV đúng.

Vậy có \(3\) phát biểu đúng.

Câu 11 Trắc nghiệm

Đặt ${\log _2}3 = a;{\log _2}5 = b$. Hãy biểu diễn $P = {\log _3}240$ theo $a$ và $b$.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

$P = {\log _3}240 = \dfrac{{{{\log }_2}240}}{{{{\log }_2}3}} = \dfrac{{{{\log }_2}\left( {{2^4}.3.5} \right)}}{{{{\log }_2}3}} = \dfrac{{{{\log }_2}{2^4} + {{\log }_2}3 + {{\log }_2}5}}{{{{\log }_2}3}} = \dfrac{{a + b + 4}}{a}$

Câu 12 Trắc nghiệm

Cho \(\ln x = 2\). Tính giá trị của biểu thức \(T = 2\ln \sqrt {ex}  - \ln \dfrac{{{e^2}}}{{\sqrt x }} + \ln 3.{\log _3}e{x^2}\) ?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có

$\begin{array}{l}T = 2\ln \sqrt {ex}  - \ln \dfrac{{{e^2}}}{{\sqrt x }} + \ln 3.{\log _3}e{x^2}\\ = 2\ln \left( {{e^{\dfrac{1}{2}}}.{x^{\dfrac{1}{2}}}} \right) - \left( {\ln {e^2} - \ln {x^{\dfrac{1}{2}}}} \right) + \ln 3.\dfrac{{\ln \left( {e.{x^2}} \right)}}{{\ln 3}}\\ = 2\left( {\dfrac{1}{2} + \dfrac{1}{2}\ln x} \right) - \left( {2 - \dfrac{1}{2}\ln x} \right) + \ln e + 2\ln x\\ = 2\left( {\dfrac{1}{2} + \dfrac{1}{2}.2} \right) - \left( {2 - \dfrac{1}{2}.2} \right) + 1 + 2.2 = 7\end{array}$

Câu 13 Trắc nghiệm

Chọn mệnh đề đúng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: $2{\log _a}\sqrt b  = 2.{\log _a}{b^{\dfrac{1}{2}}} = 2.\dfrac{1}{2}{\log _a}b = {\log _a}b$ nên A đúng.

Câu 14 Trắc nghiệm

Đặt $a = \log_{2}3, b = \log_{5}3$. Hãy biểu diễn $\log_{6}45$ theo $a$ và $b$:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Có $a = {\log _2}3 \Rightarrow {\log _3}2 = \dfrac{1}{a};b = {\log _5}3 \Rightarrow {\log _3}5 = \dfrac{1}{b}$

${\log _6}45 = \dfrac{{{{\log }_3}45}}{{{{\log }_3}6}} = \dfrac{{{{\log }_3}\left( {{3^2}.5} \right)}}{{{{\log }_3}\left( {2.3} \right)}} = \dfrac{{2 + {{\log }_3}5}}{{{{\log }_3}2 + 1}} = \dfrac{{2 + \dfrac{1}{b}}}{{\dfrac{1}{a} + 1}} = \dfrac{{2ab + a}}{{ab + b}}$

Câu 15 Trắc nghiệm

Cho $\log x = a$ và $\ln 10 = b$ . Tính \({\log _{10e}}x\)  theo $a$ và $b$

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: \({\log _{10e}}x = \dfrac{1}{{{{\log }_x}10e}} = \dfrac{1}{{{{\log }_x}e + {{\log }_x}10}} = \dfrac{1}{{\dfrac{{\ln e}}{{\ln x}} + \dfrac{{\ln 10}}{{\ln x}}}} = \dfrac{{\ln x}}{{1 + \ln 10}} = \dfrac{{\ln 10.\log x}}{{1 + \ln 10}}\)

Suy ra \({\log _{10e}}x = \dfrac{{ab}}{{1 + b}}\).

Câu 16 Trắc nghiệm

Với điều kiện các logarit đều có nghĩa, chọn công thức biến đổi đúng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Từ công thức ${\log _a}b.{\log _b}c = {\log _a}c \Leftrightarrow {\log _b}c = \dfrac{{{{\log }_a}c}}{{{{\log }_a}b}}\left( {0 < a,b \ne 1;c > 0} \right)$ ta thấy chỉ có đáp án A đúng.

Câu 17 Trắc nghiệm

Biết \({\log _{15}}20 = a + \dfrac{{2{{\log }_3}2 + b}}{{{{\log }_3}5 + c}}\) với \(a,\,\,b,\,\,c \in \mathbb{Z}\). Tính \(T = a + b + c\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có:

\(\begin{array}{l}{\log _{15}}20 = {\log _{15}}\left( {{2^2}.5} \right)\\ = 2{\log _{15}}2 + {\log _{15}}5\\ = \dfrac{2}{{{{\log }_2}15}} + \dfrac{1}{{{{\log }_5}15}}\\ = \dfrac{2}{{{{\log }_2}3 + {{\log }_2}5}} + \dfrac{1}{{{{\log }_5}3 + {{\log }_5}5}}\\ = \dfrac{2}{{\dfrac{1}{{{{\log }_3}2}} + \dfrac{{{{\log }_3}5}}{{{{\log }_3}2}}}} + \dfrac{1}{{{{\log }_5}3 + 1}}\\ = \dfrac{{2{{\log }_3}2}}{{1 + {{\log }_3}5}} + \dfrac{1}{{\dfrac{1}{{{{\log }_3}5}} + 1}}\\ = \dfrac{{2{{\log }_3}2}}{{1 + {{\log }_3}5}} + \dfrac{{{{\log }_3}5}}{{{{\log }_3}5 + 1}}\\ = \dfrac{{2{{\log }_3}2 + {{\log }_3}5}}{{{{\log }_3}5 + 1}}\\ = \dfrac{{{{\log }_3}5 + 1 + 2{{\log }_3}2 - 1}}{{{{\log }_3}5 + 1}}\\ = 1 + \dfrac{{2{{\log }_3}2 - 1}}{{{{\log }_3}5 + 1}}\end{array}\)

\( \Rightarrow a = 1,\,\,b =  - 1,\,\,c = 1\).

Vậy \(T = a + b + c = 1 + \left( { - 1} \right) + 1 = 1.\)

Câu 18 Trắc nghiệm

Nếu $\log_{12} 18 = a$ thì $\log_{2} 3$ bằng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Đăt ${\log _2}3 = x$. Ta có

$\begin{array}{l}a = {\log _{12}}18 = \dfrac{{{{\log }_2}18}}{{{{\log }_2}12}} = \dfrac{{{{\log }_2}\left( {{{2.3}^2}} \right)}}{{{{\log }_2}\left( {{2^2}.3} \right)}} = \dfrac{{1 + 2{{\log }_2}3}}{{2 + {{\log }_2}3}} = \dfrac{{1 + 2x}}{{2 + x}}\\ \Rightarrow a\left( {2 + x} \right) = 1 + 2x \Rightarrow x\left( {a - 2} \right) = 1 - 2a\\ \Rightarrow {\log _2}3 = x = \dfrac{{1 - 2a}}{{a - 2}}\end{array}$

Câu 19 Trắc nghiệm

Một quần thể sinh vật tại thời điểm hiện tại có \(T\) (con), biết quần thể đó có tỉ lệ tăng trưởng \(r\) theo năm, hỏi số sinh vật trong quần thể từ \(2\) năm trước là bao nhiêu?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Từ công thức tăng trưởng mũ: \(T = A.{e^{Nr}}\) với \(N = 2\) ta được:\(A = \dfrac{T}{{{e^{2r}}}} = T{e^{ - 2r}}\).

Câu 20 Trắc nghiệm

Chọn công thức đúng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Từ công thức ${\log _{{a^n}}}b = \dfrac{1}{n}{\log _a}b\left( {0 < a \ne 1;b > 0;n \ne 0} \right)$ ta thấy chỉ có đáp án B đúng.