Điều kiện để ${\log _a}b$ có nghĩa là:
Điều kiện để ${\log _a}b$ có nghĩa là $0 < a \ne 1,b > 0$.
Với các số thực $a,b > 0$ bất kì; rút gọn biểu thức $P = 2{\log _2}a - {\log _{\dfrac{1}{2}}}{b^2}$
$P = {\log _2}{a^2} - {\log _{{2^{ - 1}}}}{b^2} = {\log _2}{a^2} + {\log _2}{b^2} = {\log _2}\left( {{a^2}{b^2}} \right) = {\log _2}{\left( {ab} \right)^2}$
Cho số thực $x$ thỏa mãn ${\log _2}\left( {{{\log }_8}x} \right) = {\log _8}\left( {{{\log }_2}x} \right).$Tính giá trị của $P = {\left( {{{\log }_2}x} \right)^2}$
Điều kiện xác định: \(\left\{ \begin{array}{l}x > 0\\{\log _2}x > 0\\{\log _8}x > 0\end{array} \right.\)
Khi đó:
\({\log _2}\left( {{{\log }_8}x} \right) = {\log _8}\left( {{{\log }_2}x} \right) \Leftrightarrow {\log _2}\left( {\dfrac{1}{3}{{\log }_2}x} \right) = {\log _2}\sqrt[3]{{\left( {{{\log }_2}x} \right)}}\)
\( \Leftrightarrow \dfrac{1}{3}{\log _2}x = \sqrt[3]{{\left( {{{\log }_2}x} \right)}} \Leftrightarrow \dfrac{1}{{27}}\log _2^3x = {\log _2}x \Leftrightarrow {\left( {{{\log }_2}x} \right)^2} = 27\)
(vì \({\log _2}x > 0\) nên chia cả hai vế cho \({\log _2}x \ne 0\)
Chọn mệnh đề đúng:
Ta có: ${\log _2}16 = {\log _2}{2^4} = 4$; ${\log _3}81 = {\log _3}{3^4} = 4$ nên ${\log _2}16 = {\log _3}81$.
Chọn mệnh đề đúng:
Ta có: ${2^{{{\log }_2}3}} = 3 = {5^{{{\log }_5}3}}$ nên B đúng.
Với điều kiện các logarit đều có nghĩa, chọn mệnh đề đúng:
Ta có: ${\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c\left( {0 < a \ne 1;b,c > 0} \right)$
${\log _a}\left( {\dfrac{b}{c}} \right) = {\log _a}b - {\log _a}c\left( {0 < a \ne 1;b,c > 0} \right)$
Cho hai số thực $a$ và $b$ , với $1 < a < b$ . Khẳng định nào dưới đây là khẳng định đúng?
Ta có: \({\log _a}b > {\log _a}a = 1;{\log _b}a < {\log _b}b = 1 \Rightarrow {\log _b}a < 1 < {\log _a}b\)
Xét $a$ và $b$ là hai số thực dương tùy ý. Đặt \(x = \ln {({a^2} - ab + {b^2})^{1000}},\) \(y = 1000\ln a - \ln \dfrac{1}{{{b^{1000}}}}\). Khẳng định nào dưới đây là khẳng định đúng?
Ta có $x = \ln {\left( {{a^2} - ab + {b^2}} \right)^{1000}} = 1000\ln \left( {{a^2} - ab + {b^2}} \right)$
$y = 1000\ln a - \ln \dfrac{1}{{{b^{1000}}}} = 1000\ln a + 1000\ln b = 1000\ln ab$
Ta có ${a^2} - {\rm{a}}b + {b^2} \ge ab$ nên $\ln \left( {{a^2} - ab + {b^2}} \right) \ge \ln ab \Leftrightarrow 1000\ln \left( {{a^2} - ab + {b^2}} \right) \ge 1000\ln ab \Leftrightarrow x \ge y$
Cho $0 < x < 1;0 < a;b;c \ne 1$ và $\log_c x > 0 > \log_b x > \log_a x$ so sánh $a;b;c$ ta được kết quả:
Vì $0 < x < 1 \Rightarrow \ln x < 0$. Do đó
${\log _c}x > 0 > {\log _b}x > {\log _a}x $ $\Leftrightarrow \dfrac{{\ln x}}{{\ln c}} > 0 > \dfrac{{\ln x}}{{\ln b}} > \dfrac{{\ln x}}{{\ln a}}$ $ \Rightarrow \ln c < 0 < \ln a < \ln b$
Mà hàm số $y = \ln x$ đồng biến trên $\left( {0; + \infty } \right)$ nên ta suy ra $c < a < b$
Cho các phát biểu sau:
(I). Nếu \(C = \sqrt {AB} \) thì \(2\ln C = \ln A + \ln B\) với $A, B$ là các biểu thức luôn nhận giá trị dương.
(II). \(\left( {a - 1} \right){\log _a}x \ge 0 \Leftrightarrow x \ge 1\) với \(a > 0,a \ne 1\)
(III). \({m^{{{\log }_a}m}} = {n^{{{\log }_a}n}},\) với \(m,n > 0\) và \(a > 0,a \ne 1\)
(IV).\(\mathop {\lim }\limits_{x \to + \infty } {\log _{\frac{1}{2}}}x = - \infty \)
Số phát biểu đúng là
Ta có ${C^2} = AB \Rightarrow {{\mathop{\rm lnC}\nolimits} ^2} = {\mathop{\rm \ln (AB)}\nolimits} \Rightarrow 2\ln C = \ln A + \ln B$ nên I đúng
Ta có $\left( {a - 1} \right){\log _a}x \ge 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{a - 1 > 0}\\{{{\log }_a}x \ge 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{a - 1 < 0}\\{{{\log }_a}x \le 0}\end{array}} \right.}\end{array}} \right. $ $\Leftrightarrow x\ge 1$ suy ra II đúng.
Logarit cơ số $m$ hai vế ta được ${\log _a}m.{\log _m}m \ne {\log _a}n.{\log _m}n$ suy ra III sai
Ta có $\mathop {\lim }\limits_{x \to + \infty } {\log _{\frac{1}{2}}}x = - \infty $ đúng nên IV đúng.
Vậy có \(3\) phát biểu đúng.
Đặt ${\log _2}3 = a;{\log _2}5 = b$. Hãy biểu diễn $P = {\log _3}240$ theo $a$ và $b$.
$P = {\log _3}240 = \dfrac{{{{\log }_2}240}}{{{{\log }_2}3}} = \dfrac{{{{\log }_2}\left( {{2^4}.3.5} \right)}}{{{{\log }_2}3}} = \dfrac{{{{\log }_2}{2^4} + {{\log }_2}3 + {{\log }_2}5}}{{{{\log }_2}3}} = \dfrac{{a + b + 4}}{a}$
Cho \(\ln x = 2\). Tính giá trị của biểu thức \(T = 2\ln \sqrt {ex} - \ln \dfrac{{{e^2}}}{{\sqrt x }} + \ln 3.{\log _3}e{x^2}\) ?
Ta có
$\begin{array}{l}T = 2\ln \sqrt {ex} - \ln \dfrac{{{e^2}}}{{\sqrt x }} + \ln 3.{\log _3}e{x^2}\\ = 2\ln \left( {{e^{\dfrac{1}{2}}}.{x^{\dfrac{1}{2}}}} \right) - \left( {\ln {e^2} - \ln {x^{\dfrac{1}{2}}}} \right) + \ln 3.\dfrac{{\ln \left( {e.{x^2}} \right)}}{{\ln 3}}\\ = 2\left( {\dfrac{1}{2} + \dfrac{1}{2}\ln x} \right) - \left( {2 - \dfrac{1}{2}\ln x} \right) + \ln e + 2\ln x\\ = 2\left( {\dfrac{1}{2} + \dfrac{1}{2}.2} \right) - \left( {2 - \dfrac{1}{2}.2} \right) + 1 + 2.2 = 7\end{array}$
Chọn mệnh đề đúng:
Ta có: $2{\log _a}\sqrt b = 2.{\log _a}{b^{\dfrac{1}{2}}} = 2.\dfrac{1}{2}{\log _a}b = {\log _a}b$ nên A đúng.
Đặt $a = \log_{2}3, b = \log_{5}3$. Hãy biểu diễn $\log_{6}45$ theo $a$ và $b$:
Có $a = {\log _2}3 \Rightarrow {\log _3}2 = \dfrac{1}{a};b = {\log _5}3 \Rightarrow {\log _3}5 = \dfrac{1}{b}$
${\log _6}45 = \dfrac{{{{\log }_3}45}}{{{{\log }_3}6}} = \dfrac{{{{\log }_3}\left( {{3^2}.5} \right)}}{{{{\log }_3}\left( {2.3} \right)}} = \dfrac{{2 + {{\log }_3}5}}{{{{\log }_3}2 + 1}} = \dfrac{{2 + \dfrac{1}{b}}}{{\dfrac{1}{a} + 1}} = \dfrac{{2ab + a}}{{ab + b}}$
Cho $\log x = a$ và $\ln 10 = b$ . Tính \({\log _{10e}}x\) theo $a$ và $b$
Ta có: \({\log _{10e}}x = \dfrac{1}{{{{\log }_x}10e}} = \dfrac{1}{{{{\log }_x}e + {{\log }_x}10}} = \dfrac{1}{{\dfrac{{\ln e}}{{\ln x}} + \dfrac{{\ln 10}}{{\ln x}}}} = \dfrac{{\ln x}}{{1 + \ln 10}} = \dfrac{{\ln 10.\log x}}{{1 + \ln 10}}\)
Suy ra \({\log _{10e}}x = \dfrac{{ab}}{{1 + b}}\).
Với điều kiện các logarit đều có nghĩa, chọn công thức biến đổi đúng:
Từ công thức ${\log _a}b.{\log _b}c = {\log _a}c \Leftrightarrow {\log _b}c = \dfrac{{{{\log }_a}c}}{{{{\log }_a}b}}\left( {0 < a,b \ne 1;c > 0} \right)$ ta thấy chỉ có đáp án A đúng.
Biết \({\log _{15}}20 = a + \dfrac{{2{{\log }_3}2 + b}}{{{{\log }_3}5 + c}}\) với \(a,\,\,b,\,\,c \in \mathbb{Z}\). Tính \(T = a + b + c\).
Ta có:
\(\begin{array}{l}{\log _{15}}20 = {\log _{15}}\left( {{2^2}.5} \right)\\ = 2{\log _{15}}2 + {\log _{15}}5\\ = \dfrac{2}{{{{\log }_2}15}} + \dfrac{1}{{{{\log }_5}15}}\\ = \dfrac{2}{{{{\log }_2}3 + {{\log }_2}5}} + \dfrac{1}{{{{\log }_5}3 + {{\log }_5}5}}\\ = \dfrac{2}{{\dfrac{1}{{{{\log }_3}2}} + \dfrac{{{{\log }_3}5}}{{{{\log }_3}2}}}} + \dfrac{1}{{{{\log }_5}3 + 1}}\\ = \dfrac{{2{{\log }_3}2}}{{1 + {{\log }_3}5}} + \dfrac{1}{{\dfrac{1}{{{{\log }_3}5}} + 1}}\\ = \dfrac{{2{{\log }_3}2}}{{1 + {{\log }_3}5}} + \dfrac{{{{\log }_3}5}}{{{{\log }_3}5 + 1}}\\ = \dfrac{{2{{\log }_3}2 + {{\log }_3}5}}{{{{\log }_3}5 + 1}}\\ = \dfrac{{{{\log }_3}5 + 1 + 2{{\log }_3}2 - 1}}{{{{\log }_3}5 + 1}}\\ = 1 + \dfrac{{2{{\log }_3}2 - 1}}{{{{\log }_3}5 + 1}}\end{array}\)
\( \Rightarrow a = 1,\,\,b = - 1,\,\,c = 1\).
Vậy \(T = a + b + c = 1 + \left( { - 1} \right) + 1 = 1.\)
Nếu $\log_{12} 18 = a$ thì $\log_{2} 3$ bằng:
Đăt ${\log _2}3 = x$. Ta có
$\begin{array}{l}a = {\log _{12}}18 = \dfrac{{{{\log }_2}18}}{{{{\log }_2}12}} = \dfrac{{{{\log }_2}\left( {{{2.3}^2}} \right)}}{{{{\log }_2}\left( {{2^2}.3} \right)}} = \dfrac{{1 + 2{{\log }_2}3}}{{2 + {{\log }_2}3}} = \dfrac{{1 + 2x}}{{2 + x}}\\ \Rightarrow a\left( {2 + x} \right) = 1 + 2x \Rightarrow x\left( {a - 2} \right) = 1 - 2a\\ \Rightarrow {\log _2}3 = x = \dfrac{{1 - 2a}}{{a - 2}}\end{array}$
Một quần thể sinh vật tại thời điểm hiện tại có \(T\) (con), biết quần thể đó có tỉ lệ tăng trưởng \(r\) theo năm, hỏi số sinh vật trong quần thể từ \(2\) năm trước là bao nhiêu?
Từ công thức tăng trưởng mũ: \(T = A.{e^{Nr}}\) với \(N = 2\) ta được:\(A = \dfrac{T}{{{e^{2r}}}} = T{e^{ - 2r}}\).
Chọn công thức đúng:
Từ công thức ${\log _{{a^n}}}b = \dfrac{1}{n}{\log _a}b\left( {0 < a \ne 1;b > 0;n \ne 0} \right)$ ta thấy chỉ có đáp án B đúng.