Cho số thực $x$ thỏa mãn ${\log _2}\left( {{{\log }_8}x} \right) = {\log _8}\left( {{{\log }_2}x} \right).$Tính giá trị của $P = {\left( {{{\log }_2}x} \right)^2}$
Trả lời bởi giáo viên
Điều kiện xác định: \(\left\{ \begin{array}{l}x > 0\\{\log _2}x > 0\\{\log _8}x > 0\end{array} \right.\)
Khi đó:
\({\log _2}\left( {{{\log }_8}x} \right) = {\log _8}\left( {{{\log }_2}x} \right) \Leftrightarrow {\log _2}\left( {\dfrac{1}{3}{{\log }_2}x} \right) = {\log _2}\sqrt[3]{{\left( {{{\log }_2}x} \right)}}\)
\( \Leftrightarrow \dfrac{1}{3}{\log _2}x = \sqrt[3]{{\left( {{{\log }_2}x} \right)}} \Leftrightarrow \dfrac{1}{{27}}\log _2^3x = {\log _2}x \Leftrightarrow {\left( {{{\log }_2}x} \right)^2} = 27\)
(vì \({\log _2}x > 0\) nên chia cả hai vế cho \({\log _2}x \ne 0\)
Hướng dẫn giải:
Sử dụng tính chất logarit \({\log _{{a^n}}}b = \dfrac{1}{n}{\log _a}b\left( {n \ne 0;0 < a \ne 1;b > 0} \right)\)