Hàm số logarit

Kỳ thi ĐGNL ĐHQG Hà Nội

Đổi lựa chọn

Câu 21 Trắc nghiệm

Tìm tập giá trị \({\rm{T}}\) của hàm số \(f\left( x \right) = \dfrac{{\ln x}}{x}\) với \(x \in \left[ {1;{e^2}} \right].\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Hàm số \(f\left( x \right)\) xác định và liên tục trên đoạn \(\left[ {1;{e^2}} \right]\).

Đạo hàm \(f'\left( x \right) = \dfrac{{1 - \ln x}}{{{x^2}}}\)\( \Rightarrow f'\left( x \right) = 0 \Leftrightarrow 1 - \ln x = 0\) \( \Leftrightarrow x = e \in \left[ {1;{e^2}} \right]\)

Ta có \(\left\{ \begin{array}{l}f\left( 1 \right) = 0\\f\left( e \right) = \dfrac{1}{e}\\f\left( {{e^2}} \right) = \dfrac{2}{{{e^2}}}\end{array} \right.\) \( \Rightarrow \mathop {\min }\limits_{x \in \left[ {1;{e^2}} \right]} f\left( x \right) = 0,\mathop {\max }\limits_{x \in \left[ {1;{e^2}} \right]} f\left( x \right) = \dfrac{1}{e}\) \( \Rightarrow {\rm{T}} = \left[ {0;\dfrac{1}{e}} \right]\)

Câu 22 Trắc nghiệm

Biết hai hàm số $y = {a^x}$ và $y = f\left( x \right)$ có đồ thị như hình vẽ đồng thời đồ thị của hai hàm số này đối xứng nhau qua đường thẳng $d:y =  - x$. Tính $f\left( { - {a^3}} \right).$

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Giả sử \(M\left( {{x_M};{y_M}} \right)\) là điểm thuộc hàm số \(y = {a^x}\); \(N\left( {{x_0};{y_0}} \right)\) là điểm đối xứng của \(M\) qua đường thẳng \(y =  - x\).

Gọi \(I\) là trung điểm của \(MN \Rightarrow I\left( {\dfrac{{{x_M} + {x_0}}}{2};\dfrac{{{y_M} + {y_0}}}{2}} \right)\).

Vì \(M,{\rm{ }}N\) đối xứng nhau qua $d$ $ \Rightarrow \left\{ \begin{array}{l}I \in d\\\overrightarrow {MN} //\overrightarrow {{n_d}} \end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{{y_M} + {y_0}}}{2} =  - \dfrac{{{x_M} + {x_0}}}{2}\\\dfrac{{{x_M} - {x_0}}}{1} = \dfrac{{{y_M} - {y_0}}}{1}\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}{x_0} =  - {y_M}\\{y_0} =  - {x_M}\end{array} \right.$

Ta có \(M\left( {{x_M};{y_M}} \right) \in \) đồ thị \(y = {a^x}\) nên \({y_M} = {a^{{x_M}}}\).

Do đó ${x_0} =  - {y_M} =  - {a^{{x_M}}} =  - {a^{ - {y_0}}}$$ \Rightarrow  - {y_0} = {\log _a}\left( { - {x_0}} \right) \Leftrightarrow {y_0} =  - {\log _a}\left( { - {x_0}} \right)$.

Điều này chứng tỏ điểm \(N\) thuộc đồ thị hàm số $f\left( x \right) = - {\log _a}\left( { - x} \right)$.

Khi đó \(f\left( { - {a^3}} \right) =  - {\log _a}{a^3} =  - 3.\)

Câu 23 Trắc nghiệm

Tìm tham số \(m\) để hàm số \(y = \dfrac{{{{\log }_{\dfrac{1}{2}}}x - 2}}{{{{\log }_2}x - m}}\) đồng biến trên khoảng \(\left( {0;1} \right)\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: \(y = \dfrac{{{{\log }_{\dfrac{1}{2}}}x - 2}}{{{{\log }_2}x - m}} = \dfrac{{ - {{\log }_2}x - 2}}{{{{\log }_2}x - m}}\).

Đặt \(t = {\log _2}x\), với \(x \in \left( {0;1} \right) \Rightarrow t \in \left( { - \infty ;0} \right)\).

\( \Rightarrow \) Hàm số \(y = \dfrac{{{{\log }_{\dfrac{1}{2}}}x - 2}}{{{{\log }_2}x - m}}\) đồng biến trên khoảng \(\left( {0;1} \right)\) khi và chỉ khi \(y = f\left( t \right) = \dfrac{{ - t - 2}}{{t - m}}\) đồng biến trên \(\left( { - \infty ;0} \right)\).

\( \Leftrightarrow \left\{ \begin{array}{l}y' = \dfrac{{m + 2}}{{{{\left( {t - m} \right)}^2}}} > 0\\m \notin \left( { - \infty ;0} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >  - 2\\m \ge 0\end{array} \right. \Leftrightarrow m \ge 0\).

Câu 24 Trắc nghiệm

Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:

Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},\,\,{x_2}.\) Biết rằng \({x_2} = 2{x_1},\) giá trị của \(\dfrac{a}{b}\) bằng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Dựa vào đồ thị hàm số ta thấy \({x_1}\) là nghiệm của phương trình hoành độ giao điểm \({\log _b}{x_1} = 3 \Leftrightarrow {x_1} = {b^3}.\)

Và \({x_2}\) là nghiệm của phương trình hoành độ giao điểm \({\log _a}{x_2} = 3 \Leftrightarrow {x_2} = {a^3}.\)

Theo đề bài ta có: \({x_2} = 2{x_1} \Rightarrow {a^3} = 2{b^3} \Leftrightarrow \dfrac{{{a^3}}}{{{b^3}}} = 2 \Leftrightarrow \dfrac{a}{b} = \sqrt[3]{2}.\)

Câu 25 Trắc nghiệm

Hàm số \(y = {\log _{\frac{e}{3}}}\left( {x - 1} \right)\) nghịch biến trên khoảng nào dưới đây?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét hàm số \(y = {\log _{\frac{e }{3}}}\left( {x - 1} \right)\) có TXĐ: \(D = \left( {1; + \infty } \right)\) và \(a = \frac{e }{3} < 1\)

\( \Rightarrow \) Hàm số nghịch biến trên \(\left( {1; + \infty } \right).\)

Câu 26 Trắc nghiệm

Tập xác định của hàm số \(f\left( x \right) = {\log _{\frac{1}{2}}}\left( {{{\log }_4}\left( {{{\log }_{\frac{1}{4}}}\left( {{{\log }_{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right)} \right)} \right)} \right)\) là một khoảng có độ dài n/m, với m và n là các số nguyên dương và nguyên tố cùng nhau. Khi đó \(m-n\) bằng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Hàm số \(f\left( x \right) = {\log _{\frac{1}{2}}}\left( {{{\log }_4}\left( {{{\log }_{\frac{1}{4}}}\left( {{{\log }_{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right)} \right)} \right)} \right)\) xác định

\( \Leftrightarrow \left\{ \begin{array}{l}x > 0\\{\log _{\frac{1}{{16}}}}x > 0\\{\log _{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right) > 0\\{\log _{\frac{1}{4}}}\left( {{{\log }_{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right)} \right) > 0\\{\log _4}\left( {{{\log }_{\frac{1}{4}}}\left( {{{\log }_{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right)} \right)} \right) > 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x < 1\\{\log _{\frac{1}{{16}}}}x > 1\\{\log _{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right) < 1\\{\log _{\frac{1}{4}}}\left( {{{\log }_{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right)} \right) > 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}0 < x < 1\\x < \frac{1}{{16}}\\{\log _{\frac{1}{{16}}}}x < 16\\{\log _{16}}\left( {{{\log }_{\frac{1}{{16}}}}x} \right) < \frac{1}{4}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}0 < x < 1\\x < \frac{1}{{16}}\\x > {\left( {\frac{1}{{16}}} \right)^{16}}\\{\log _{\frac{1}{{16}}}}x < {16^{\frac{1}{4}}} = 2\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{\left( {\frac{1}{{16}}} \right)^{16}} < x < \frac{1}{{16}}\\x > {\left( {\frac{1}{{16}}} \right)^2} = \frac{1}{{256}}\end{array} \right.\) \( \Leftrightarrow \dfrac{1}{{256}} < x < \dfrac{1}{{16}}\).

Suy ra tập xác định của hàm số đã cho là \(D = \left( {\dfrac{1}{{256}};\dfrac{1}{{16}}} \right)\).

\( \Rightarrow \) Tập xác định là khoảng có độ dài là \(\dfrac{1}{{16}} - \dfrac{1}{{256}} = \dfrac{{15}}{{256}}\) \( \Rightarrow n = 15,\,\,m = 256\).

Vậy \(m - n = 256 - 15 = 241\).

Câu 27 Trắc nghiệm

Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = {\log _{2020}}\left( {mx - m + 2} \right)\) xác định trên \(\left[ {1; + \infty } \right).\)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

ĐKXĐ: \(mx - m + 2 > 0 \Leftrightarrow m\left( {x - 1} \right) >  - 2\)

Để hàm số xác định trên \(\left[ {1; + \infty } \right)\) thì \(m\left( {x - 1} \right) >  - 2\,\,(*),\,\,\forall x \ge 1\)

+) \(x = 1 \Rightarrow \) (*) \( \Leftrightarrow 0m >  - 2\) đúng với mọi m

+) \(x > 1 \Rightarrow \) (*) \( \Leftrightarrow m > \dfrac{{ - 2}}{{x - 1}}\), \(\forall x > 1\) (2*).

Xét hàm số \(f\left( x \right) = \dfrac{{ - 2}}{{x - 1}}\,\,\forall x > 1\)ta có \(f'\left( x \right) = \dfrac{2}{{{{\left( {x - 1} \right)}^2}}} > 0\,\,\forall x \in \left( {1; + \infty } \right)\).

BBT:

Dựa vào BBT \( \Rightarrow m \ge 0\).

Vậy để hàm số \(y = {\log _{2020}}\left( {mx - m + 2} \right)\) xác định trên \(\left[ {1; + \infty } \right)\) thì \(m \ge 0\).

Câu 28 Trắc nghiệm

Đồ thị của hàm số \(y = f\left( x \right)\)  đối xứng với đồ thị của hàm số \(y = {a^x}\,\,\left( {a > 0,\,\,a \ne 1} \right)\) qua điểm \(M\left( {1;1} \right)\). Giá trị của hàm số \(y = f\left( x \right)\) tại \(x = 2 + {\log _a}\dfrac{1}{{2020}}\) bằng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Lấy điểm \(A\left( {{x_0};{a^{{x_0}}}} \right) \in \left( {{C_1}} \right)\) (đồ thị của hàm số \(y = {a^x}\). Gọi B là điểm đối xứng của A qua M(1;1).

\( \Rightarrow \left\{ \begin{array}{l}{x_B} = 2{x_M} - {x_A} = 2 - {x_0}\\{y_B} = 2{y_M} - {y_A} = 2 - {a^{{x_0}}}\end{array} \right.\)\( \Rightarrow {x_0} = 2 - {x_B} \Rightarrow {y_B} = 2 - {a^{2 - {x_B}}}\)

\( \Rightarrow \) Hàm số \(y = f\left( x \right) = 2 - {a^{2 - x}}\)

\( \Rightarrow f\left( {2 + {{\log }_a}\dfrac{1}{{2020}}} \right) = 2 - {a^{2 - \left( {2 + {{\log }_a}\dfrac{1}{{2020}}} \right)}}\)\( = 2 - {a^{{{\log }_a}20220}} = 2 - 2020 =  - 2018\).

Câu 29 Trắc nghiệm

Cho \(a\) và \(b\) là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \(y = {\log _a}x,\,\,y = {\log _b}x\) và trục hoành lần lượt tại \(A,\,\,B\) và \(H\) phân biệt ta đều có \(3HA = 4HB\) (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi \(H\left( {{x_0};0} \right)\,\,\left( {{x_0} > 1} \right)\) ta có: \(A\left( {{x_0};{{\log }_a}{x_0}} \right);\,\,B\left( {{x_0};{{\log }_b}{x_0}} \right)\).

\( \Rightarrow HA = {\log _a}{x_0}\); \(HB =  - {\log _b}{x_0}\) (do \({\log _a}{x_0} > 0,\,\,{\log _b}{x_0} < 0\)).

Theo bài ra ta có: \(3HA = 4HB\)\( \Leftrightarrow 3{\log _a}{x_0} =  - 4{\log _b}{x_0}\).

\(\begin{array}{l} \Leftrightarrow 3{\log _a}{x_0} + 4{\log _b}{x_0} = 0\\ \Leftrightarrow \dfrac{3}{{{{\log }_{{x_0}}}a}} + \dfrac{4}{{{{\log }_{{x_0}}}b}} = 0\\ \Leftrightarrow \dfrac{{3{{\log }_{{x_0}}}b + 4{{\log }_{{x_0}}}a}}{{{{\log }_{{x_0}}}b.{{\log }_{{x_0}}}a}} = 0\\ \Leftrightarrow {\log _{{x_0}}}{b^3} + {\log _{{x_0}}}{a^4} = 0\\ \Leftrightarrow {\log _{{x_0}}}{a^4}{b^3} = 0\\ \Leftrightarrow {a^4}{b^3} = 1\end{array}\)

Câu 30 Trắc nghiệm

Cho hàm số \(f\left( x \right) = \ln \left( {{e^x} + m} \right)\) có \(f'\left( { - \ln 2} \right) = \frac{3}{2}.\) Mệnh đề nào dưới đây đúng?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có:  \(f\left( x \right) = \ln \left( {{e^x} + m} \right)\)

Điều kiện: \({e^x} + m > 0.\)

\(\begin{array}{l} \Rightarrow f'\left( x \right) = \frac{{{e^x}}}{{{e^x} + m}}\\ \Rightarrow f'\left( { - \ln 2} \right) = \frac{3}{2} \Leftrightarrow \frac{{{e^{ - \ln 2}}}}{{{e^{ - \ln 2}} + m}} = \frac{3}{2}\\ \Leftrightarrow 2.{e^{ - \ln 2}} = 3.{e^{ - \ln 2}} + 3m\\ \Leftrightarrow {2.2^{ - \ln e}} = {3.2^{ - \ln e}} + 3m\\ \Leftrightarrow 2.\frac{1}{2} - 3.\frac{1}{2} = 3m\\ \Leftrightarrow m =  - \dfrac{1}{6}.\\ \Rightarrow m \in \left( { - 2;\,\,0} \right).\end{array}\)

Câu 31 Trắc nghiệm

Xét các số thực \(a\), \(b\) thỏa mãn \(a > b > 1\). Tìm giá trị nhỏ nhất \({P_{\min }}\) của biểu thức \(P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\left( {\dfrac{a}{b}} \right)\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có \(P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\dfrac{a}{b}\)

\( \Leftrightarrow P = 4\log _{\frac{a}{b}}^2a + 3\left( {{{\log }_b}a - 1} \right)\)\( \Leftrightarrow P = \dfrac{4}{{{{\left( {1 - {{\log }_a}b} \right)}^2}}} + 3\left( {\dfrac{1}{{{{\log }_a}b}} - 1} \right)\) 

Đặt \({\log _a}b = t \Rightarrow 0 < t < 1\) . Khi đó \(P = \dfrac{4}{{{{\left( {t - 1} \right)}^2}}} + \dfrac{3}{t} - 3\)

\(P' = \dfrac{{ - 8}}{{{{\left( {t - 1} \right)}^3}}} - \dfrac{3}{{{t^2}}} = 0\) \( \Leftrightarrow 3{t^3} - {t^2} + 9t - 3 = 0\)  \( \Rightarrow t = \dfrac{1}{3}\)

\( \Rightarrow {P_{\min }} = 15\).

Câu 32 Trắc nghiệm

Cho hai hàm số \(y = \ln \left| {\dfrac{{x - 2}}{x}} \right|\) và \(y = \dfrac{3}{{x - 2}} - \dfrac{1}{x} + 4m - 2020\). Tổng tất cả các giá trị nguyên của tham số m để hai đồ thị hàm số cắt nhau tại một điểm duy nhất bằng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

ĐKXĐ: \(x \ne 0,\,\,x \ne 2\).

Xét phương trình hoành độ giao điểm:

\(\begin{array}{l}\ln \left| {\dfrac{{x - 2}}{x}} \right| = \dfrac{3}{{x - 2}} - \dfrac{1}{x} + 4m - 2020\\ \Leftrightarrow \ln \left| {\dfrac{{x - 2}}{x}} \right| - \dfrac{3}{{x - 2}} + \dfrac{1}{x} = 4m - 2020\end{array}\)

Đặt \(f\left( x \right) = \ln \left| {\dfrac{{x - 2}}{x}} \right| - \dfrac{3}{{x - 2}} + \dfrac{1}{x}\) ta có:

\(\begin{array}{l}f'\left( x \right) = \dfrac{2}{{{x^2}}}:\dfrac{{x - 2}}{x} + \dfrac{3}{{{{\left( {x - 2} \right)}^2}}} - \dfrac{1}{{{x^2}}}\\f'\left( x \right) = \dfrac{2}{{x\left( {x - 2} \right)}} + \dfrac{3}{{{{\left( {x - 2} \right)}^2}}} - \dfrac{1}{{{x^2}}}\\f'\left( x \right) = \dfrac{{2x\left( {x - 2} \right) + 3{x^2} - {{\left( {x - 2} \right)}^2}}}{{{x^2}{{\left( {x - 2} \right)}^2}}}\\f'\left( x \right) = \dfrac{{2{x^2} - 4x + 3{x^2} - {x^2} + 4x - 4}}{{{x^2}{{\left( {x - 2} \right)}^2}}}\\f'\left( x \right) = \dfrac{{4{x^2} - 4}}{{{x^2}{{\left( {x - 2} \right)}^2}}} = 0 \Leftrightarrow x =  \pm 1\end{array}\)

BBT:

Dựa vào BBT ta thấy để phương trình có nghiệm duy nhất thì \(\left[ \begin{array}{l}4m - 2020 = 0\\4m - 2020 = \ln 3\\4m - 2020 = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 505\\m = \dfrac{{2020 + \ln 3}}{4} \notin \mathbb{Z}\,\,\left( {ktm} \right)\\m = 506\end{array} \right.\).

Vậy tổng các giá trị của \(m\) thỏa mãn yêu cầu bài toán là: \(505 + 506 = 1011\).

Câu 33 Trắc nghiệm

Cho $x, y$ là các số thực thỏa mãn \({\log _4}\left( {x + y} \right) + {\log _4}\left( {x - y} \right) \ge 1\). Tìm giá trị nhỏ nhất \({P_{\min }}\) của biểu thức \(P = 2x - y\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện : $x + y >0, x – y > 0$

\({\log _4}\left( {x + y} \right) + {\log _4}\left( {x - y} \right) \ge 1 \Leftrightarrow {\log _4}\left( {{x^2} - {y^2}} \right) \ge 1 \Leftrightarrow {x^2} - {y^2} \ge 4\)

Ta có: $P = 2x - y = \dfrac{{x + y + 3(x - y)}}{2} \ge \sqrt {(x + y).3(x - y)}  = \sqrt {3({x^2} - {y^2})}  = \sqrt {3.4}  = 2\sqrt 3 $

Dấu “=” xảy ra khi:

\(\left\{ \begin{array}{l}x + y = 3\left( {x - y} \right)\\{x^2} - {y^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = 3\left( {x - y} \right)\\3{\left( {x - y} \right)^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - y = \dfrac{2}{{\sqrt 3 }}\\x + y = 2\sqrt 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{1}{{\sqrt 3 }} + \sqrt 3 \\y = \sqrt 3  - \dfrac{1}{{\sqrt 3 }}\end{array} \right.\)

Vậy   $Min\,P = 2\sqrt 3 $.