Phương trình mũ và một số phương pháp giải

Kỳ thi ĐGNL ĐHQG Hà Nội

Đổi lựa chọn

Câu 21 Trắc nghiệm

Số nghiệm thực phân biệt của phương trình ${4^{{x^2}}} - {5.2^{{x^2}}} + 4 = 0$ là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

$\begin{array}{l}{4^{{x^2}}} - {5.2^{{x^2}}} + 4 = 0 \Leftrightarrow {\left( {{2^{{x^2}}}} \right)^2} - {5.2^{{x^2}}} + 4 = 0 \Leftrightarrow \left( {{2^{{x^2}}} - 4} \right)\left( {{2^{{x^2}}} - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{2^{{x^2}}} = 4\\{2^{{x^2}}} = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^2} = 2\\{x^2} = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  \pm \sqrt 2 \\x = 0\end{array} \right.\end{array}$

Câu 22 Trắc nghiệm

Trong các phương trình sau đây, phương trình nào có nghiệm?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ý A: Điều kiện $x > 0$. Có ${x^{\frac{2}{3}}} + 5 > 0,\forall x > 0$ nên phương trình vô nghiệm

Ý B: Điều kiện $x > 4$. Có ${\left( {3x} \right)^{\frac{1}{3}}} + {\left( {x - 4} \right)^{\frac{2}{3}}} > 0,\forall x > 4$ nên phương trình vô nghiệm

Ý C: Điều kiện $x \ge 2$. Có $\sqrt {4x - 8}  + 2 > 0,\forall x \ge 2$ nên phương trình vô nghiệm

Ý D: Điều kiện $x > 0$. Có $2{x^{\frac{1}{2}}} - 3 = 0 \Leftrightarrow {x^{\frac{1}{2}}} = \dfrac{3}{2} \Leftrightarrow x = {\log _{\frac{1}{2}}}\dfrac{3}{2}$ (thỏa mãn)

Câu 23 Trắc nghiệm

Cho $a$ là số thực dương, khác $1$ và thỏa mãn $\dfrac{1}{2}\left( {{a^\alpha } + {a^{ - \alpha }}} \right) = 1$ . Tìm $\alpha $

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Áp dụng bất đẳng thức Cauchy ta có \({a^\alpha } + {a^{ - \alpha }}\; \geqslant 2\) . 

Dấu "=" xảy ra khi \({a^\alpha } = {a^{ - \alpha }}\). Điều này dẫn đến \(\alpha  =  - \alpha  \Rightarrow \alpha  = 0\)

Câu 24 Trắc nghiệm

Cho \({4^x} + {4^{ - x}} = 7\). Khi đó biểu thức \(P = \dfrac{{5 - {2^x} - {2^{ - x}}}}{{8 + {{4.2}^x} + {{4.2}^{ - x}}}} = \dfrac{a}{b}\) với \(\dfrac{a}{b}\) tối giản và \(a,b \in \mathbb{Z}\). Tích \(a.b\) có giá trị bằng

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

\(\begin{array}{l}{4^x} + {4^{ - x}} = 7\\{4^x} + {4^{ - x}} + 2 = 9\\ \Leftrightarrow {\left( {{2^x}} \right)^2} + {\left( {{2^{ - x}}} \right)^2} + {2.2^x}{.2^{ - x}} = 9\\ \Leftrightarrow {\left( {{2^x} + {2^{ - x}}} \right)^2} = 9\\ \Leftrightarrow {2^x} + {2^{ - x}} = 3\end{array}\)

(do \({2^x} + {2^{ - x}} > 0\))

Vậy

\(\begin{array}{l}P = \dfrac{{5 - {2^x} - {2^{ - x}}}}{{8 + {{4.2}^x} + {{4.2}^{ - x}}}}\\\,\,\,\, = \dfrac{{5 - \left( {{2^x} + {2^{ - x}}} \right)}}{{8 + 4\left( {{2^x} + {2^{ - x}}} \right)}}\\\,\,\,\, = \dfrac{{5 - 3}}{{8 + 4.3}} = \dfrac{1}{{10}}\\ \Rightarrow a = 1,b = 10 \Rightarrow a.b = 1.10 = 10\end{array}\)

Câu 25 Trắc nghiệm

Có bao nhiêu giá trị nguyên dương của tham số \(m\) để phương trình \({16^x} - {2.12^x} + \left( {m - 2} \right){.9^x} = 0\) có nghiệm dương?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có \({16^x} - {2.12^x} + \left( {m - 2} \right){.9^x} = 0\)(1)

\( \Leftrightarrow {\left( {\frac{4}{3}} \right)^{2x}} - 2.{\left( {\frac{4}{3}} \right)^x} + m - 2 = 0\); chia cả hai vế cho \({9^x}\).

Đặt \({\left( {\frac{4}{3}} \right)^x} = t \Rightarrow x = {\log _{\frac{4}{3}}}t > 0 \Leftrightarrow t > 1\)

Khi đó ta có phương trình \({t^2} - 2t + m - 2 = 0\)(*)

Để phương trình (1) có nghiệm dương thì phương trình (*) có nghiệm lớn hơn 1.

(*) có nghiệm \( \Leftrightarrow \Delta ' = 1 - m + 2 \ge 0 \Leftrightarrow 3 - m \ge 0 \Leftrightarrow m \le 3\)

Với \(m \le 3\) thì \(\left( * \right)\) có nghiệm \({t_1} = 1 - \sqrt {3 - m} ,{t_2} = 1 + \sqrt {3 - m} \)

Để (*) có nghiệm lớn hơn 1 thì

\(1 + \sqrt {3 - m}  > 1 \Leftrightarrow \sqrt {3 - m}  > 0\) \( \Leftrightarrow 3 - m > 0 \Leftrightarrow m < 3\)

Mà \(m\) nguyên dương nên \(m \in \left\{ {1;2} \right\}\).

Vậy có 2 giá trị của \(m\) thỏa mãn.

Câu 26 Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

Biết $f\left( 0 \right) = \dfrac{7}{6}$, giá trị lớn nhất của \(m\) để phương trình \({e^{2{f^3}\left( x \right) - \dfrac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \dfrac{3}{2}}} = m\) có nghiệm trên đoạn \(\left[ {0;\,2} \right]\) là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \({e^{2{f^3}\left( x \right) - \dfrac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \dfrac{3}{2}}} = m \Leftrightarrow 2{f^3}\left( x \right) - \dfrac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \dfrac{3}{2} = \ln m\)

Xét \(g\left( x \right) = 2{f^3}\left( x \right) - \dfrac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \dfrac{3}{2}\) có:

\(g'\left( x \right) = 6{f^2}\left( x \right)f'\left( x \right) - 13f\left( x \right)f'\left( x \right) + 7f'\left( x \right) = f'\left( x \right)\left[ {6{f^2}\left( x \right) - 13f\left( x \right) + 7} \right]\)

Suy ra \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f'\left( x \right) = 0\\6{f^2}\left( x \right) - 13f\left( x \right) + 7 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}f'\left( x \right) = 0\\f\left( x \right) = 1\\f\left( x \right) = \dfrac{7}{6}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1;x = 3\\x = 1,x = {x_1} > 3\\x = {x_2} < 1\end{array} \right.\)

Xét \(g\left( x \right)\) trên đoạn \(\left[ {0;2} \right]\).

+ Trong khoảng \(\left( {0;1} \right)\) thì \(f'\left( x \right) < 0,f\left( x \right) > 1,f\left( x \right) < f(0)=\dfrac{7}{6}\) nên \(f'\left( x \right)\left( {f\left( x \right) - 1} \right)\left( {f\left( x \right) - \dfrac{7}{6}} \right) > 0\) hay \(g'\left( x \right) > 0\).

+ Trong khoảng \(\left( {1;2} \right)\) thì \(f'\left( x \right) > 0,f\left( x \right) > 1,f\left( x \right) <\dfrac{15}{13}< \dfrac{7}{6}\) nên \(f'\left( x \right)\left( {f\left( x \right) - 1} \right)\left( {f\left( x \right) - \dfrac{7}{6}} \right) < 0\) hay \(g'\left( x \right) < 0\).

Từ đó ta có bảng biến thiên của \(g\left( x \right)\) như sau:

Từ bảng biến thiên ta thấy \(\mathop {\max }\limits_{\left[ {0;2} \right]} g\left( x \right) = 4\).

Vậy yêu cầu bài toán thỏa nếu và chỉ nếu \(\ln m \le 4 \Leftrightarrow m \le {e^4}\) hay giá trị lớn nhất của \(m\) là \(m = {e^4}\).

Câu 27 Trắc nghiệm

Phương trình \({2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x\) có tổng các nghiệm gần nhất với số nào dưới đây:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

\({2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x \Leftrightarrow {2^{23{x^3} + x}} + 23{x^3} + x = {2^{10{x^2}}} + 10{x^2}\)

Xét hàm số \(f(t) = {2^t} + t;f'(t) = {2^t}\ln 2 + 1 > 0,\forall t\)

\( \Rightarrow f(23{x^3} + x) = f(10{x^2}) \Leftrightarrow 23{x^3} + x = 10{x^2} \Leftrightarrow x(23{x^2} - 10x + 1) = 0\)

Theo vi-et cho phương trình bậc 3 ta có \({x_1} + {x_2} + {x_3} =  - \dfrac{b}{a} = \dfrac{{10}}{{23}} \approx 0,45\)

Câu 28 Trắc nghiệm

Tìm giá trị $m$ để phương trình \({2^{\left| {x - 1} \right| + 1}} + {2^{\left| {x - 1} \right|}} + m = 0\) có nghiệm duy nhất

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đặt \(\left| {x - 1} \right| = a\) khi đó phương trình trở thành \({2^{a + 1}} + {2^a} + m = 0\) (1)

Để phương trình đã cho có nghiệm duy nhất thì pt (1) bắt buộc phải có nghiệm duy nhất $a=0$ ( vì nếu $a>0$ thì sẽ tồn tại 2 giá trị của $x$)

Nên ${2^1} + {2^0} + m = 0$. Suy ra $m =  - 3$

Câu 29 Trắc nghiệm

Số nghiệm thực phân biệt của phương trình \({2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} = 4\) là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Điều kiện : $x \ne 0$

Với $x < 0$  ta có $\left\{ \begin{array}{l}x + \dfrac{1}{{4x}} < 0\\\dfrac{x}{4} + \dfrac{1}{x} < 0\end{array} \right.$ $ \Rightarrow \left\{ \begin{array}{l}{2^{x + \frac{1}{{4x}}}} < 1\\{2^{\frac{x}{4} + \frac{1}{x}}} < 1\end{array} \right. $ $\Rightarrow {2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} < 2$

⇒ Phương trình không có nghiệm $x < 0$

Với $x > 0$, áp dụng bất đẳng thức Côsi cho hai số dương ta được.

$\left\{ \begin{array}{l}x + \dfrac{1}{{4x}} \ge 2\sqrt {x.\dfrac{1}{{4x}}}  = 1\\\dfrac{x}{4} + \dfrac{1}{x} \ge 2\sqrt {\dfrac{x}{4}.\dfrac{1}{x}}  = 1\end{array} \right. $ $\Rightarrow \left\{ \begin{array}{l}{2^{x + \frac{1}{{4x}}}} \ge 2\\{2^{\frac{x}{4} + \frac{1}{x}}} \ge 2\end{array} \right. $ $\Rightarrow {2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} \ge 4$

Dấu “=” xảy ra khi và chỉ khi $\left\{ \begin{array}{l}x = \dfrac{1}{{4x}}\\\dfrac{x}{4} = \dfrac{1}{x}\end{array} \right.$

$ \Leftrightarrow \left\{ \begin{array}{l}
4{x^2} = 1\\
{x^2} = 4
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{x^2} = \frac{1}{4}\\
{x^2} = 4
\end{array} \right.$(không xảy ra)

Vậy ${2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} > 4$ nên phương trình vô nghiệm

Câu 30 Trắc nghiệm

Phương trình $x({2^{x - 1}} + 4) = {2^{x + 1}} + {x^2}$có tổng các nghiệm bằng

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

$\begin{array}{l}x\left( {{2^{x - 1}} + 4} \right) = {2^{x + 1}} + {x^2} \Leftrightarrow x{.2^{x - 1}} - {4.2^{x - 1}} + 4x - {x^2} = 0 \Leftrightarrow \left( {x - 4} \right)\left( {{2^{x - 1}} - x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 4\\{2^{x - 1}} - x = 0\,\left( * \right)\end{array} \right.\end{array}$

Xét hàm số $f\left( x \right) = {2^{x - 1}} - x$ trên $\mathbb{R}$ . Ta có

$f'\left( x \right) = {2^{x - 1}}\ln 2 - 1 = 0 \Leftrightarrow x = {x_0} = 1 + {\log _2}\left( {\dfrac{1}{{\ln 2}}} \right)$

$f'\left( x \right) < 0 \Leftrightarrow x < {x_0};f'\left( x \right) > 0 \Leftrightarrow x > {x_0}$

nên phương trình $f(x) = 0$ có tối đa 1 nghiệm trong các khoảng $\left( {-\infty ;{x_0}} \right)$  và $\left( {{x_0}; + \infty } \right)$

Mà $f\left( 1 \right) = f\left( 2 \right) = 0$  nên phương trình (*) có 2 nghiệm $x = 1$ và $x = 2$

Tổng các nghiệm của phương trình đã cho là $7$.

Câu 31 Trắc nghiệm

Tìm tham số m để tổng các nghiệm của phương trình sau đạt giá trị nhỏ nhất \(1 + \left[ {2{x^2} - m\left( {m + 1} \right)x - 2} \right]{.2^{1 + mx - {x^2}}} = \left( {{x^2} - mx - 1} \right){.2^{mx\left( {1 - m} \right)}} + {x^2} - {m^2}x\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: \(1 + \left[ {2{x^2} - m\left( {m + 1} \right)x - 2} \right]{.2^{1 + mx - {x^2}}} = \left( {{x^2} - mx - 1} \right){.2^{mx\left( {1 - m} \right)}} + {x^2} - {m^2}x\)

\( \Leftrightarrow \left[ {\left( {{x^2} - {m^2}x - 1} \right) + \left( {{x^2} - mx - 1} \right)} \right]{.2^{ - \left( {{x^2} - mx - 1} \right)}} = \left( {{x^2} - mx - 1} \right){.2^{\left( {{x^2} - {m^2}x - 1} \right) - \left( {{x^2} - mx - 1} \right)}} + {x^2} - {m^2}x - 1\)

Đặt \(\left\{ \begin{array}{l}u = {x^2} - {m^2}x - 1\\v = {x^2} - mx - 1\end{array} \right.\). Phương trình trở thành: \(\left( {u + v} \right){.2^{ - v}} = v{.2^{u - v}} + u \Leftrightarrow u\left( {{2^{ - v}} - 1} \right) = v{2^{ - v}}\left( {{2^u} - 1} \right)\) (*)

+) Dễ dàng kiểm tra \(u = 0\) hoặc \(v = 0\) là nghiệm của (*)

+) Với \(u,v \ne 0\), \(\left( * \right) \Leftrightarrow \dfrac{{{2^{ - v}} - 1}}{{v{2^{ - v}}}} = \dfrac{{{2^u} - 1}}{u} \)

\(\Leftrightarrow \dfrac{{{2^u} - 1}}{u} = \dfrac{{1 - {2^v}}}{v} \)

\(\Leftrightarrow \dfrac{{{2^u} - 1}}{u} + \dfrac{{{2^v} - 1}}{v} = 0\)

Xét hàm \(f\left( t \right) = \frac{{{2^t} - 1}}{t}\) trên \(\mathbb{R}\backslash \left\{ 0 \right\}\) ta thấy:

+) Với \(t > 0\) thì \(\left\{ \begin{array}{l}{2^t} - 1 > 0\\t > 0\end{array} \right.\) \( \Rightarrow \frac{{{2^t} - 1}}{t} > 0\) \( \Rightarrow f\left( t \right) > 0\).

+) Với \(t < 0\) thì \(\left\{ \begin{array}{l}{2^t} - 1 < 0\\t < 0\end{array} \right. \Rightarrow \frac{{{2^t} - 1}}{t} > 0\) \( \Rightarrow f\left( t \right) > 0\).

Do đó \(f\left( t \right) > 0\) với mọi \(t \ne 0\).

\( \Rightarrow f\left( u \right) > 0,f\left( v \right) > 0,\forall u,v \ne 0\)

\( \Rightarrow f\left( u \right) + f\left( v \right) > 0,\forall u,v \ne 0\)

\( \Rightarrow \frac{{{2^u} - 1}}{u} + \frac{{{2^v} - 1}}{v} > 0,\forall u,v \ne 0\)

Do đó phương trình \(\frac{{{2^u} - 1}}{u} + \frac{{{2^v} - 1}}{v} = 0\) vô nghiệm.

Vậy \(\left[ \begin{array}{l}u = 0\\v = 0\end{array} \right. \)

\(\Leftrightarrow \)\(\left[ \begin{array}{l}{x^2} - {m^2}x - 1 = 0\,\,\,(1)\\{x^2} - mx - 1 = 0\,\,\,\,(2)\end{array} \right.\)

Hai phương trình trên luôn có hai nghiệm phân biệt, tổng hai nghiệm ở mỗi phương trình là:

\({S_1} = {m^2},\,{S_2} = m \Rightarrow S = {m^2} + m \ge  - \dfrac{1}{4}\).

Vậy tổng các nghiệm của phương trình đã cho nhỏ nhất là \( - \dfrac{1}{4}\) khi \(m =  - \dfrac{1}{2}\).

Câu 32 Trắc nghiệm

Cho các số thực không âm x,y,z thỏa mãn \({5^x} + {25^y} + {125^z} = 2020\). Giá trị nhỏ nhất của biếu thức \(T = \dfrac{x}{6} + \dfrac{y}{3} + \dfrac{z}{2}\) là

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Đặt \(\left\{ \begin{array}{l}a = {5^x}\\b = {5^{2y}}\\c = {5^{3z}}\end{array} \right.\), với \(x,\,\,y,\,\,z \ge 0\) thì \(a,\,\,b,\,\,c \ge 1\).

Theo bài ra ta có \(a + b + c = 2020\) \( \Rightarrow 1 \le a,b,c \le 2018\).

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,\left( {a - 1} \right)\left( {b - 1} \right)\left( {c - 1} \right) \ge 0\\ \Leftrightarrow \left( {ab - a - b + 1} \right)\left( {c - 1} \right) \ge 0\\ \Leftrightarrow abc + \left( {a + b + c} \right) - \left( {ab + bc + ca} \right) - 1 \ge 0\,\,\,\,\left( 1 \right)\\\,\,\,\,\,\,\left( {a - 2018} \right)\left( {b - 2018} \right)\left( {c - 2018} \right) \le 0\\ \Leftrightarrow \left( {ab - 2018\left( {a + b} \right) + {{2018}^2}} \right)\left( {c - 2018} \right) \le 0\\ \Leftrightarrow abc + {2018^2}\left( {a + b + c} \right) - 2018\left( {ab + bc + ca} \right) - {2018^3} \le 0\,\,\,\left( 2 \right)\end{array}\)

Lấy (1) nhân với 2018 rồi trừ đi (2) ta được:

\(\begin{array}{l}\,\,\,\,\,2017abc + \left( {2018 - {{2018}^2}} \right)\left( {a + b + c} \right) - 2018 + {2018^3} \ge 0\\ \Leftrightarrow 2017abc + 2018\left( {1 - 2018} \right)\left( {a + b + c} \right) + {2018^3} - 2018 \ge 0\\ \Leftrightarrow 2017abc - 2017.2018.\left( {a + b + c} \right) + {2018^3} - 2018 \ge 0\\ \Leftrightarrow {2017.5^x}{.5^{2y}}{.5^{3z}} - 2017.2018.2020 + {2018^3} - 2018 \ge 0\\ \Leftrightarrow {2017.5^x}{.5^{2y}}{.5^{3z}} + 2018\left( {{{2018}^2} - 2017.2020 - 1} \right) \ge 0\\ \Leftrightarrow {2017.5^x}{.5^{2y}}{.5^{3z}} - 2017.2018 \ge 0\\ \Leftrightarrow {5^x}{.5^{2y}}{.5^{3z}} - 2018 \ge 0\\ \Leftrightarrow {5^x}{.5^{2y}}{.5^{3z}} \ge 2018\\ \Leftrightarrow {5^{x + 2y + 3z}} \ge 2018\\ \Leftrightarrow x + 2y + 3z \ge {\log _5}2018\\ \Leftrightarrow \dfrac{{x + 2y + 3z}}{6} \ge \dfrac{1}{6}{\log _5}2018\\ \Leftrightarrow \dfrac{x}{6} + \dfrac{y}{3} + \dfrac{z}{2} \ge \dfrac{1}{6}{\log _5}2018\end{array}\)  

Vậy giá trị nhỏ nhất của biểu tức \(T = \dfrac{x}{6} + \dfrac{y}{3} + \dfrac{z}{2}\) là \(\dfrac{1}{6}{\log _5}2018\).

Câu 33 Trắc nghiệm

Đề thi THPT QG - 2021 - mã 101

Có bao nhiêu số nguyên \(y\) sao cho tồn tại \(x \in \,\left( {\dfrac{1}{3};3} \right)\) thỏa mãn \(27{\,^{3{{\rm{x}}^2} + xy}} = \left( {1 + xy} \right){27^{9{\rm{x}}}}\,?\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

* pt \( \Leftrightarrow 27{\,^{3{x^2} + xy - 9x}} = xy + 1\).

\( \Rightarrow xy + 1 > 0 \Leftrightarrow y >  - \dfrac{1}{x}\), khi \(x \in \left( {\dfrac{1}{3};3} \right)\) \( \Rightarrow y >  - 3\) thì mới tồn tại \(x \in \left( {\dfrac{1}{3};3} \right)\).

\( \Rightarrow \) Ta chặn được \(y >  - 3\)  =>\(y \ge  - 2\).

* \(pt \Leftrightarrow {27^{3{x^2} + xy - 9x}} - xy - 1 = 0\).

Đặt \(f\left( x \right) = g\left( y \right) = {27^{3{x^2} + xy - 9x}} - xy - 1\) ta có \(\left\{ \begin{array}{l}f\left( {\dfrac{1}{3}} \right) = {3^{y - 8}} - \dfrac{y}{3} - 1\\f\left( 3 \right) = {27^{3y}} - 3y - 1\end{array} \right.\).

Nhận thấy ngay \(f\left( 3 \right) \ge 0\,\,\forall y \in \mathbb{Z}\), chỉ bằng 0 tại \(y = 0\).

+ Xét \(y = 0 \Rightarrow \) thay vào phương trình ban đầu \( \Rightarrow \left[ \begin{array}{l}x = 0\\x = 3\end{array} \right.\), loại vì không có nghiệm thuộc \(\left( {\dfrac{1}{3};3} \right)\).

+ Xét \(y \ne 0 \Rightarrow f\left( 3 \right) > 0\,\,\forall x \in {\mathbb{Z}^*}\).

1) Ta Table khảo sát \(f\left( {\dfrac{1}{3}} \right)\) với \(\left\{ \begin{array}{l}Start:\,\,y =  - 2\\End:\,\,y = 17\\Step:\,\,\, = 1\end{array} \right.\)

\( \Rightarrow f\left( {\dfrac{1}{3}} \right) < 0\,\,\forall y \in \left\{ { - 2; - 1;1;2;...;9} \right\}\).

\( \Rightarrow f\left( {\dfrac{1}{3}} \right).f\left( 3 \right) < 0\,\,\forall y \in \left\{ { - 2; - 1;1;2;...;9} \right\}\)

\( \Rightarrow \) Có 11 giá trị của \(y\) để tồn tại nghiệm \(x \in \left( {\dfrac{1}{3};3} \right)\).

2) Từ bảng Table ta nhận thấy khi \(y \ge 10\) thì \(f\left( {\dfrac{1}{3}} \right) > 0\) và đồng biến.

Ta đi chứng minh khi \(y \ge 10\) thì phương trình vô nghiệm.

\(g'\left( y \right) = x\left( {{{27}^{3{x^2} + x\left( {y - 9} \right)}}.\ln 27 - 1} \right) > 0\,\,\left\{ \begin{array}{l}\forall y \ge 10\\x \in \left( {\dfrac{1}{3};3} \right)\end{array} \right.\)

\( \Rightarrow g\left( y \right) \ge g\left( {10} \right) = {27^{3{x^2} + x}} - 10x - 1 = h\left( x \right)\).

Ta có \(h'\left( x \right) = {27^{3{x^2} + x}}\left( {6x + 1} \right)\ln 27 - 10 > 0\,\,\forall x \in \left( {\dfrac{1}{3};3} \right)\).

\( \Rightarrow h\left( x \right) > h\left( {\dfrac{1}{3}} \right) = \dfrac{{14}}{3} > 0\).

\( \Rightarrow \) Phương trình vô nghiệm với \(x \in \left( {\dfrac{1}{3};3} \right)\).

Vậy đáp số có 11 giá trị nguyên của \(y\).

Câu 34 Tự luận

Cho các số dương \(x,\,\,y\) thỏa mãn \({2^{{x^3} - y + 1}} = \dfrac{{2x + y}}{{2{x^3} + 4x + 4}}\). Giá trị nhỏ nhất của biểu thức \(P = \dfrac{7}{y} + \dfrac{{{x^3}}}{7}\) có dạng $\dfrac{a}{b}$. Tính $a-b$.

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

Bước 1: Sử dụng hàm đặc trưng, tìm biểu diễn \({x^3}\) theo \(y\).

Ta có \({2^{{x^3} - y + 1}} = \dfrac{{2x + y}}{{2{x^3} + 4x + 4}}\)

\(\begin{array}{l} \Leftrightarrow {2^{{x^3} + 2x + 2 - 2x - y - 1}} = \dfrac{{2x + y}}{{2{x^3} + 4x + 4}}\\ \Leftrightarrow \dfrac{{{2^{{x^3} + 2x + 2}}}}{{{2^{2x + y}}.2}} = \dfrac{{2x + y}}{{2\left( {{x^3} + 2x + 2} \right)}}\\ \Leftrightarrow {2^{{x^3} + 2x + 2}}\left( {{x^3} + 2x + 2} \right) = {2^{2x + y}}.\left( {2x + y} \right)\,\,\,\left( * \right)\end{array}\)

Xét \(f\left( t \right) = {2^t}.t,\,\,t > 0\) ta có \(f'\left( t \right) = {2^t} + t{.2^t}.\ln 2 > 0;\,\,\forall t > 0\). Do đó hàm số \(f\left( t \right)\) đồng biến trên \(\left( {0; + \infty } \right)\).

Do đó \(\left( * \right) \Leftrightarrow {x^3} + 2x + 2 = 2x + y \Rightarrow {x^3} = y - 2\)

Bước 2: Thế vào biểu thức \(P\), sử dụng BĐT Cô-si tìm GTNN của biểu thức \(P\).

Khi đó \(P = \dfrac{7}{y} + \dfrac{{{x^3}}}{7} = \dfrac{7}{y} + \dfrac{{y - 2}}{7} = \dfrac{7}{y} + \dfrac{y}{7} - \dfrac{2}{7} \ge 2\sqrt {\dfrac{7}{y}.\dfrac{y}{7}}  - \dfrac{2}{7} = \dfrac{{12}}{7}\).

Dấu “=” xảy ra \( \Leftrightarrow \dfrac{7}{y} = \dfrac{y}{7} \Leftrightarrow y = 7\,\,\left( {do\,\,y > 0} \right)\).

\({P_{\min }} = \dfrac{{12}}{7} \Leftrightarrow x = \sqrt[3]{5},\,\,y = 7\).

Vậy $a=12,b=7=>a-b=5$