Phương trình bậc nhất và bậc hai một ẩn
Kỳ thi ĐGNL ĐHQG Hà Nội
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right) = \dfrac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}}\) lần lượt là \(M\) và \(m\) thì:
Đặt \(f\left( x \right) = \dfrac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}} = A\)
\(\begin{array}{l} \Leftrightarrow {x^2} + 4x + 5 = A\left( {{x^2} + 3x + 3} \right)\\ \Leftrightarrow {x^2} + 4x + 5 - A\left( {{x^2} + 3x + 3} \right) = 0\\ \Leftrightarrow {x^2} + 4x + 5 - A{x^2} - 3Ax - 3A = 0\\ \Leftrightarrow \left( {1 - A} \right){x^2} + \left( {4 - 3A} \right)x + 5 - 3A = 0\,\,\,\,\left( 1 \right)\end{array}\)
Phương trình \(\left( 1 \right)\) có nghiệm \( \Leftrightarrow \Delta \ge 0\)
\(\begin{array}{l}\Delta \ge 0 \Leftrightarrow {\left( {4 - 3A} \right)^2} - 4.\left( {1 - A} \right)\left( {5 - 3A} \right) \ge 0\\\, \Leftrightarrow \left( {16 - 24A + 9{A^2}} \right) - \left( {4 - 4A} \right)\left( {5 - 3A} \right) \ge 0\\\, \Leftrightarrow \left( {16 - 24A + 9{A^2}} \right) - \left( {20 - 12A - 20A + 12{A^2}} \right) \ge 0\\\, \Leftrightarrow 16 - 24A + 9{A^2} - 20 + 12A + 20A - 12{A^2} \ge 0\\\, \Leftrightarrow - 3{A^2} + 8A - 4 \ge 0\\\, \Leftrightarrow 3{A^2} - 8A + 4 \le 0\\\, \Leftrightarrow \left( {A - 2} \right)\left( {3A - 2} \right) \le 0\\ \Leftrightarrow \dfrac{2}{3} \le A \le 2\end{array}\)
+) \(A \ge \dfrac{2}{3} \Rightarrow Min\,A = \dfrac{2}{3}\)
\(A = \dfrac{2}{3} \Leftrightarrow \dfrac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}} = \dfrac{2}{3}\)\( \Leftrightarrow 3{x^2} + 12x + 15 = 2{x^2} + 6x + 6\)\( \Leftrightarrow {x^2} + 6x + 9 = 0\)\( \Leftrightarrow x = - 3\)
+) \(A \le 2 \Rightarrow Max\,A = 2\)
\(A = 2 \Leftrightarrow \dfrac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}} = 2\)\( \Leftrightarrow {x^2} + 4x + 5 = 2{x^2} + 6x + 6\)\( \Leftrightarrow {x^2} + 2x + 1 = 0\)\( \Leftrightarrow x = - 1\)
Vậy \(Min\,f\left( x \right) = Min\,A = \dfrac{2}{3} \Leftrightarrow x = - 1\); \(Max\,f\left( x \right) = Max\,A = 2 \Leftrightarrow x = - 1\)
Khi đó, ta có: \(\left\{ \begin{array}{l}M = 2\\m = \dfrac{2}{3}\end{array} \right.\)
\(M + m = \dfrac{8}{3}\) \( \Rightarrow \) Đáp án \(A\) sai.
\(Mm = \dfrac{4}{3}\) \( \Rightarrow \) Đáp án \(B\) sai.
\(\dfrac{M}{m} = 3\) \( \Rightarrow \) Đáp án \(C\) sai.
\(M - m = \dfrac{4}{3}\) \( \Rightarrow \) Đáp án\(D\) đúng.
Tìm tất cả các gía trị thực của tham số \(m\) sao cho phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\) có hai nghiệm dương phân biệt.
Phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\) có hai nghiệm dương phân biệt khi và chỉ khi
\(\left\{ \begin{array}{l}a \ne 0\\\Delta > 0\\P> 0\\S > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ne 0\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\4{\left( {m + 1} \right)^2} - 4\left( {m - 1} \right)\left( {m + 4} \right) > 0\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\\\dfrac{{m + 4}}{{m - 1}} > 0\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\\\dfrac{{m + 1}}{{m - 1}} > 0\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\)
Giải \(\left( 1 \right)\): \(m - 1 \ne 0 \Leftrightarrow m \ne 1\)
Giải \(\left( 2 \right)\):
\(\begin{array}{l}4{\left( {m + 1} \right)^2} - 4\left( {m - 1} \right)\left( {m + 4} \right) > 0\\ \Leftrightarrow \left( {4{m^2} + 8m + 4} \right) - \left( {4m - 4} \right)\left( {m + 4} \right) > 0\\ \Leftrightarrow 4{m^2} + 8m + 4 - 4{m^2} - 16m + 4m + 16 > 0\\ \Leftrightarrow - 4m + 20 > 0\\ \Leftrightarrow m < 5\end{array}\)
Giải \(\left( 3 \right)\):
\(\dfrac{{m + 4}}{{m - 1}} > 0\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m + 4 > 0\\m - 1 > 0\end{array} \right.\\\left\{ \begin{array}{l}m + 4 < 0\\m - 1 < 0\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > - 4\\m > 1\end{array} \right.\\\left\{ \begin{array}{l}m < - 4\\m < 1\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}m > 1\\m < - 4\end{array} \right.\)
Giải \(\left( 4 \right)\):
\(\dfrac{{m + 1}}{{m - 1}} > 0\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m + 1 > 0\\m - 1 > 0\end{array} \right.\\\left\{ \begin{array}{l}m + 1 < 0\\m - 1 < 0\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > - 1\\m > 1\end{array} \right.\\\left\{ \begin{array}{l}m < - 1\\m < 1\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}m > 1\\m < - 1\end{array} \right.\)
Kết hợp cả \(4\) điều kiện ta được \(m < - 4\) hoặc \(1 < m < 5\).