Đặt \(a = {\log _3}4,b = {\log _5}4\) . Hãy biểu diễn \({\log _{12}}80\) theo $a$ và $b$
Ta có $80 = {4^2}.5;{\rm{ }}12 = 3.4$
$\begin{array}{l}{\log _{12}}80 = {\log _{12}}{4^2} + {\log _{12}}5 = 2{\log _{12}}4 + {\log _{12}}5 = \dfrac{2}{{{{\log }_4}12}} + \dfrac{1}{{{{\log }_5}12}} = \dfrac{2}{{{{\log }_4}3 + 1}} + \dfrac{1}{{{{\log }_5}3 + {{\log }_5}4}}\\ = \dfrac{2}{{\dfrac{1}{a} + 1}} + \dfrac{1}{{\dfrac{b}{a} + b}} = \dfrac{{2a}}{{a + 1}} + \dfrac{a}{{b\left( {a + 1} \right)}} = \dfrac{{2ab + a}}{{ab + b}}\end{array}$
Cho \(a > 0,\,\,b > 0\) và \(\ln \dfrac{{a + b}}{3} = \dfrac{{2\ln a + \ln b}}{3}\). Chọn mệnh đề đúng trong các mệnh đề sau:
Ta có:
\(\begin{array}{l}\,\,\,\,\,\ln \dfrac{{a + b}}{3} = \dfrac{{2\ln a + \ln b}}{3}\\ \Leftrightarrow 3\ln \dfrac{{a + b}}{3} = 2\ln a + \ln b\\ \Leftrightarrow \ln {\left( {\dfrac{{a + b}}{3}} \right)^3} = \ln {a^2} + \ln b\\ \Leftrightarrow \ln \dfrac{{{{\left( {a + b} \right)}^3}}}{{27}} = \ln \left( {{a^2}b} \right)\\ \Leftrightarrow \dfrac{{{{\left( {a + b} \right)}^3}}}{{27}} = {a^2}b\\ \Leftrightarrow {\left( {a + b} \right)^3} = 27{a^2}b\\ \Leftrightarrow {a^3} + 3{a^2}b + 3a{b^2} + {b^3} = 27{a^2}b\\ \Leftrightarrow {a^3} + {b^3} = 24{a^2}b - 3a{b^2}\\ \Leftrightarrow {a^3} + {b^3} = 3\left( {8{a^2}b - a{b^2}} \right)\end{array}\)
Giá trị ${\log _3}a$ âm khi nào?
Vì $3 > 1$ nên để ${\log _3}a < 0$ thì $0 < a < 1$.
Nếu $\log _{12}6 = a; \log _{12} 7 = b$ thì:
Gán giá trị đề bài cho bằng cách bấm:
Lần lượt thử từng đáp án: