Hoán vị - chỉnh hợp - tổ hợp - bài toán đếm

Kỳ thi ĐGNL ĐHQG Hà Nội

Đổi lựa chọn

Câu 21 Trắc nghiệm

Cho \(k,\,\,n\)\(\,(k < n)\) là các số nguyên dương. Mệnh đề nào sau đây SAI?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có:

\(C_n^k = C_n^{n - k},\,\,C_n^k = \dfrac{{n!}}{{k!\left( {n - k} \right)!}};\,\,A_n^k = k!C_n^k\) là các công thức đúng.

Câu 22 Trắc nghiệm

Có bao nhiêu cách xếp \(5\) học sinh thành một hàng dọc?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Mỗi cách xếp cho ta một hoán vị của 5 học sinh và ngược lại.

Vậy số cách xếp là \({P_5} = 5! = 120\) (cách).

Câu 23 Trắc nghiệm

Cho các chữ số 0, 1, 2, 4, 5, 7, 8, 9; có thể lập được bao nhiêu số tự nhiên chia hết cho 15, gồm 4 chữ số đôi một khác nhau?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Gọi số tự nhiên có 4 chữ số khác nhau là \(\overline {abcd} \,\,\left( {a \ne 0} \right)\).

Để một số chia hết cho 15 thì số đó phải chia hết cho 3 và cho 5.

\( \Rightarrow d \in \left\{ {0;5} \right\}\).

TH1: \(d = 0\), số cần tìm có dạng \(\overline {abc0} \).

Để số cần tìm chia hết cho 3 thì \(a + b + c\,\, \vdots \,\,3\).

Ta có các nhóm: \(\left\{ \begin{array}{l}9\,\, \equiv \,\,0\left( {\bmod 3} \right)\\\left\{ {1;4;7} \right\} \equiv 1\,\,\left( {\bmod 3} \right)\\\left\{ {2;5;8} \right\} \equiv 2\,\,\left( {\bmod 3} \right)\end{array} \right.\)

+) \(a,\,\,b,\,\,c \equiv 1\,\,\left( {\bmod 3} \right) \Rightarrow a,\,\,b,\,\,c \in \left\{ {1;4;7} \right\}\).

\( \Rightarrow \) Có \(3!\) cách chọn.

+) \(a,\,\,b,\,\,c \equiv 2\,\,\left( {\bmod 3} \right) \Rightarrow a,\,\,b,\,\,c \in \left\{ {2;5;8} \right\}\).

\( \Rightarrow \) Có \(3!\) cách chọn.

+) Trong 3 số \(a,\,\,b,\,\,c\) có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.

\( \Rightarrow \) Có \(1.C_3^1.C_3^1.3!\) cách chọn.

\( \Rightarrow \) Có \(3! + 3! + 1.C_3^1.C_3^1.3! = 66\) số.

TH2: \(d = 5\), số cần tìm có dạng \(\overline {abc5} \).

Để số cần tìm chia hết cho 3 thì \(a + b + c + 5\,\, \vdots \,\,3\), trong đó \(5 \equiv 2\,\,\left( {\bmod 3} \right)\).

Ta có các nhóm: \(\left\{ \begin{array}{l}\left\{ {0;9} \right\}\,\, \equiv \,\,0\left( {\bmod 3} \right)\\\left\{ {1;4;7} \right\} \equiv 1\,\,\left( {\bmod 3} \right)\\\left\{ {2;8} \right\} \equiv 2\,\,\left( {\bmod 3} \right)\end{array} \right.\)

+) Trong 3 số \(a,\,\,b,\,\,c\) có 2 số chia hết cho 3, 1 số chia 3 dư 1.

- Ta chọn số chia hết cho 3 trước: Có 1 cách chọn. Chọn tiếp số chia cho 3 dư 1, có \(C_3^1\) cách chọn. Sắp xếp các số này có 3! cách. Theo quy tắc nhân có:  \(C_3^1.3!\) cách chọn.

Trong các cách chọn này có số có chữ số 0 ở đầu nên ta phải trừ đi các cách chọn a,b,c có a=0, ta cần tìm \(\overline {bc}\):

 Chọn số chia hết cho 3 có 1 cách, chọn số chia 3 dư 1 có  \(C_3^1\) cách. Sắp xếp hai số này có 2! cách. Số cách chọn \(\overline {bc}\) là \(C_3^1 .2!\)

\( \Rightarrow \) Có \(C_3^1.3! - C_3^1.2! = 12\) cách chọn.

+) Trong 3 số \(a,\,\,b,\,\,c\) có 1 số chia hết cho 3, 2 số chia 3 dư 3.

\( \Rightarrow \) Có \(C_2^1.3! - 2! = 10\) cách chọn.

+) Trong 3 số \(a,\,\,b,\,\,c\) có 1 số chia 3 dư 1, 1 số chia 3 dư 2.

\( \Rightarrow \) Có \(C_3^2.C_2^1.3! = 36\) cách chọn.

Vậy có tất cả \(66 + 12 + 10 + 36 = 124\) số thỏa mãn.

Câu 24 Trắc nghiệm

Có bao nhiêu số tự nhiên có 4 chữ số mà tổng tất cả các chữ số của số đó bằng 7.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi số cần tìm có dạng \(\overline {abcd} \) \(\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{N},\,\,0 \le a,\,\,b,\,\,c,\,\,d \le 9,\,\,a \ne 0} \right)\).

TH1: Trong 4 chữ số a, b, c, d có 3 chữ số bằng 0 \( \Rightarrow b = c = d = 0,\,\,a = 7\).

Do đó có 1 số thỏa mãn.

TH2: Trong 4 chữ số a, b, c, d có 2 chữ số bằng 0.

- Chọn vị trí cho 2 chữ số 0 có \(C_3^2 = 3\) cách.

- Tổng hai chữ số còn lại là 7, ta có \(7 = 6 + 1 = 5 + 2 = 4 + 3 = 3 + 4 = 2 + 5 = 1 + 6\) nên có 6 cách chọn 2 chữ số còn lại.

Do đó trường hợp này có 18 số.

TH3: Trong 4 chữ số a, b, c, d có 1 chữ số bằng 0.

- Chọn vị trí cho 1 chữ số 0 có \(C_3^1 = 3\) cách.

- Tổng 3 chữ số còn lại bằng 7, ta có: \(7 = 1 + 1 + 5 = 1 + 2 + 4 = 1 + 3 + 3 = 2 + 2 + 3\).

   + Với bộ số (1;2;4) có \(3! = 6\) cách chọn 3 chữ số còn lại.

   + Với 3 bộ số còn lại có \(\dfrac{{3!}}{{2!}} = 3\) cách chọn 3 chữ số còn lại.

Do đó trường hợp này có \(3.\left( {6 + 3.3} \right) = 45\) số.

TH4: Trong 4 chữ số a, b, c, d  không có chữ số nằm bằng 0.

Ta có: \(\left\{ \begin{array}{l}7 = 1 + 1 + 1 + 4\\7 = 1 + 1 + 2 + 3\\7 = 1 + 2 + 2 + 2\end{array} \right.\).

   + Với bộ số (1;1;1;4), có \(\dfrac{{4!}}{{3!}} = 4\) cách chọn 4 chữ số a, b, c, d.

   + Với bộ số (1;1;2;3), có \(\dfrac{{4!}}{{2!}} = 12\) cách chọn 4 chữ số a, b, c, d.

   + Với bộ số (1;2;2;2), có \(\dfrac{{4!}}{{3!}} = 4\) cách chọn 4 chữ số a, b, c, d.

Do đó trường hợp này có 4 + 12 + 4 = 20 số thỏa mãn.

Vậy có tất cả:  1 + 18 + 45 + 20 = 84 số.

Câu 25 Tự luận

Một nhóm gồm 2 học sinh lớp 10, 2 học sinh lớp 11 và 2 học sinh lớp 12 xếp thành hai hàng ngang để chụp ảnh, mỗi hàng 3 người. Gọi n là số cách xếp sao cho 2 học sinh lớp 10 đứng ở hàng phía trước và 2 học sinh lớp 12 đứng ở hàng phía sau. Tính n.

Đáp án: 

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: 

Số cách xếp hai học sinh lớp 10 ở hàng phía trước là \(A_3^2\)

Số cách xếp hai học sinh lớp 12 ở hàng phía sau là \(A_3^2\)

Còn 2 chỗ trống. Số cách xếp hai học sinh lớp 11 ở hai vị trí còn lại là \(A_2^2\)

Vậy tổng số cách xếp có thể là \(A_3^2.A_3^2.A_2^2 = 72\)

$=>n=72$

Câu 26 Tự luận

Một lớp 11 có 30 học sinh, gồm 15 nam và 15 nữ. Gọi a là số cách xếp các học sinh thành hai hàng, một hàng nam và một hàng nữ trong lúc tập thể dục giữa giờ. Tính a.

Đáp án: 

$^2$

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: 

$^2$

Bước 1: Xếp học sinh nam

Xếp 15 học sinh nam thành một hàng có \(15!\) cách.

Bước 2: Xếp học sinh nữ

Xếp 15 học sinh nữ thành một hàng có \(15!\) cách.

Bước 3: Tính số cách xếp

Hoán đổi vị trí 2 hàng có \(2! = 2\) cách.

Vậy số cách xếp thỏa mãn là \(2.{\left( {15!} \right)^2}\).

Câu 27 Trắc nghiệm

Cho 10 điểm trong không gian, trong đó không có 3 điểm nào thẳng hàng. Nếu trong 10 điểm trên không có 4 điểm nào đồng phẳng thì có bao nhiêu tứ diện được tạo thành?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Bước 1: Xác định yếu tố cấu thành tứ diện

Một tứ diện được tạo thành là một cách chọn 4 điểm phân biệt không đồng phẳng trong 10 điểm.

Bước 2: Sử dụng công thức tổ hợp.

Số cách chọn 4 điểm trong 10 điểm: \(C_{10}^4 = 210\) cách.

Vậy số tứ diện là 210 tứ diện.

Câu 28 Tự luận

Trong kì thi học sinh giỏi có 10 học sinh đạt tối đa điểm môn Toán trong đó có 4 học sinh nam và 6 học sinh nữ. Nhà trường muốn chọn một nhóm 5 học sinh trong 10 học sinh trên để tham dự buổi lễ tuyên dương khen thưởng. Tính số cách chọn một nhóm gồm 5 học sinh mà có cả nam và nữ và số học sinh nam ít hơn số học sinh nữ.

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

TH1: Chọn 1 học sinh nam và 4 học sinh nữ có \(C_4^1.C_6^4 = 60\) cách.

TH2: Chọn 2 học sinh nam và 3 học sinh nữ có \(C_4^2.C_6^3 = 120\) cách.

Vậy có tất cả \(60 + 120 = 180\) cách chọn 5 học sinh mà có cả nam và nữ, đồng thời số học sinh nam ít hơn số học sinh nữ.

Câu 29 Tự luận

Điền số thích hợp vào ô trống:

Có 5 cuốn sách toán khác nhau và 5 cuốn sách văn khác nhau. Có bao nhiêu cách sắp xếp chúng thành 1 hàng sao cho các cuốn sách cùng môn thì đứng kề nhau?

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

Bước 1: Tính số cách sắp xếp 5 sách toán đứng cạnh nhau và 5 sách văn đứng cạnh nhau.

Ta có số cách sắp xếp 5 cuốn sách toán khác nhau là $5!$

Số cách sắp xếp 5 cuốn sách văn khác nhau là $5!$

Bước 2: Sắp xếp 10 cuốn thành 1 hàng ngang.

Có 2 cách để sắp xếp 5 cuốn sách toán khác nhau và 5 cuốn sách văn khác nhau thành 1 hàng ngang.

Do đó số cách xếp thỏa mãn bài toán là $2.5!.5!=28800$

Câu 30 Tự luận

Một thầy giáo có 20 quyển sách khác nhau gồm 7 quyển sách Toán, 5 quyển sách Lí và 8 quyển sách Hóa. Thầy chọn ra 9 quyển sách để tặng cho học sinh. Hỏi thầy giáo đó có bao nhiêu cách chọn sao cho số sách còn lại của thầy có đủ 3 môn?

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

Bước 1: Số cách chọn ra 9 quyển sách bất kì

Số cách chọn ra 9 quyển sách bất kì có \(C_{20}^9 = 167960\).

Bước 2: Tìm số cách chọn sao cho số sách còn lại của thầy không có đủ 3 môn

Ta tìm số cách chọn sao cho số sách còn lại của thầy không có đủ 3 môn.

Vì số sách còn lại của thầy không đủ ba môn nên thầy đã tặng hết ít nhất một môn.

TH1: Tặng 7 quyển sách Toán + 2 quyển sách khác sách Toán: có \(C_7^7.C_{13}^2 = 78\) cách

TH2: Tặng 5 quyển sách Lí + 4 quyển sách khác sách Lí: có \(C_5^5.C_{15}^4 = 1365\) cách.

TH3: Tặng 8 quyển sách Hóa + 1 quyển sách khác sách Hóa: có \(C_8^8.C_{12}^1 = 12\) cách.

\( \Rightarrow \) số cách chọn sao cho số sách còn lại của thầy không có đủ 3 môn là: \(78 + 1365 + 12 = 1455\) cách.

Bước 3: Lấy phần bù

Vậy số cách chọn sao cho số sách còn lại của thầy có đủ 3 môn là: \(167960 - 1455 = 166505\) cách.

Câu 31 Tự luận

Từ các chữ số 0; 1; 2; 3; 5; 8 có thể lập được bao nhiêu số tự nhiên lẻ có bốn chữ số đôi một khác nhau và phải có mặt chữ số 3.

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

Bước 1: 

Gọi số tự nhiên có 4 chữ số khác nhau là \(\overline {abcd} \,\,\left( {a \ne 0} \right)\).

Bước 2: \(d = 3\)

TH1: \(d = 3\).

Số cách chọn \(a\) là 4 cách.

Số cách chọn \(b,\,\,c\) là: \(A_4^2 = 12\) cách.

\( \Rightarrow \) Có \(4.12.1 = 48\) số.

Bước 3: $d \ne 3$

TH2: \(d \ne 3 \Rightarrow d \in \left\{ {1;5} \right\} \Rightarrow \) Có 2 cách chọn \(d\).

2a) Nếu \(a = 3 \Rightarrow \) Có 1 cách chọn \(a\).

       Số cách chọn \(b,\,\,c\) là \(A_4^2 = 12\) cách.

\( \Rightarrow \) Có \(2.1.12 = 24\) số.

2b) Nếu \(a \ne 3 \Rightarrow \) Có 3 cách chọn \(a\).

Vì một trong hai số b và c phải có 1 số bằng 3 nên:

      Số cách chọn \(b,\,\,c\) là: 2.3=6 cách.

\( \Rightarrow \) Có \(2.3.6 = 36\) số.

Bước 4: Sử dụng quy tắc cộng tính tổng các số tìm được

Vậy có tất cả \(48 + 24 + 36 = 108\) số.