Giá trị lớn nhất, nhỏ nhất của hàm số

Kỳ thi ĐGNL ĐHQG Hà Nội

Đổi lựa chọn

Câu 21 Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Xét hàm số \(g\left( x \right) = f\left( {{x^3} + 2x} \right) + m\). Giá trị của tham số \(m\) để giá trị lớn nhất của hàm số \(g\left( x \right)\) trên đoạn \(\left[ {0;1} \right]\) bằng \(9\) là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có : \(g'\left( x \right) = \left( {3{x^2} + 2} \right).f'\left( {{x^3} + 2x} \right)\)

\(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}3{x^2} + 2 = 0\\f'\left( {{x^3} + 2x} \right) = 0\end{array} \right. \Leftrightarrow f'\left( {{x^3} + 2x} \right) = 0\) (Do phương trình \(3{x^2} + 2 = 0\) vô nghiệm).

Từ đồ thị hàm số \(f\left( x \right)\) đã cho ta có : \(f'\left( {{x^3} + 2x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^3} + 2x = 0\\{x^3} + 2x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = {x_0} \approx 0,77\end{array} \right.\)

Hàm số \(g\left( x \right)\) trên đoạn \(\left[ {0;1} \right]\) có : 

\(\begin{array}{l}g\left( 0 \right) = f\left( 0 \right) + m = m + 1\\g\left( {{x_0}} \right) = f\left( 2 \right) + m = m - 3\\g\left( 1 \right) = f\left( 3 \right) + m = m + 1\end{array}\)

Do đó, \(\mathop {\max }\limits_{\left[ {0;1} \right]} g\left( x \right) = g\left( 0 \right) = g\left( 1 \right) = m + 1\).

Theo giả thiết, giá trị lớn nhất của hàm số \(g\left( x \right)\) trên \(\left[ {0;1} \right]\) bằng 9 nên \(m + 1 = 9 \Leftrightarrow m = 8\).

Vậy \(m = 8.\)

Câu 22 Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Gọi \(M\) và \(m\) tương ứng là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = f\left( {1 - 2\cos x} \right)\) trên \(\left[ {0;\,\,\dfrac{{3\pi }}{2}} \right]\). Giá trị của \(M + m\) bằng

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Đặt \(t = 1 - 2\cos x\). Với \(x \in \left[ {0;\,\,\dfrac{{3\pi }}{2}} \right]\) thì \(\cos x \in \left[ { - 1;1} \right] \Rightarrow \)\(1 - 2\cos x \in \left[ { - 1;3} \right] \Rightarrow t \in \left[ { - 1;3} \right].\)

Khi đó ta có \(y = f\left( t \right)\) với \(t \in \left[ { - 1;3} \right]\).

Quan sát đồ thị hàm số \(y = f\left( t \right)\) trên đoạn \(\left[ { - 1;3} \right]\), ta thấy GTLN của hàm số là 2, GTNN của hàm số là \( - \dfrac{3}{2}\)

\( \Rightarrow M = 2,\,\,m =  - \dfrac{3}{2} \Rightarrow M + m = \dfrac{1}{2}\)

Câu 23 Trắc nghiệm

Có bao nhiêu số nguyên \(m \in \left[ { - 5;5} \right]\) để \(\mathop {\min }\limits_{\left[ {1;3} \right]} \left| {{x^3} - 3{x^2} + m} \right| \ge 2\).

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} + m\) trên \(\left[ {1;3} \right]\), có \(f'\left( x \right) = 3{x^2} - 6x,\,\,f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\left( L \right)\\x = 2\end{array} \right.\)

Bảng biến thiên:

\(\mathop {\min }\limits_{\left[ {1;3} \right]} \left| {{x^3} - 3{x^2} + m} \right| \ge 2 \Rightarrow \left[ \begin{array}{l}m - 4 > 0\\m < 0\end{array} \right.\)

TH1: \(m - 4 > 0 \Leftrightarrow m > 4\)

\(\mathop {\min }\limits_{\left[ {1;3} \right]} \left| {{x^3} - 3{x^2} + m} \right| \ge 2 \Leftrightarrow m - 4 \ge 2 \Leftrightarrow m \ge 6\)

Mà  \(m \in \left[ { - 5;5} \right] \Rightarrow m \in \emptyset \)

TH2: \(m < 0\)

\(\mathop {\min }\limits_{\left[ {1;3} \right]} \left| {{x^3} - 3{x^2} + m} \right| \ge 2 \Leftrightarrow  - m \ge 2 \Leftrightarrow m \le  - 2\)

Mà \(m \in \left[ { - 5;5} \right],m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 5; - 4; - 3; - 2} \right\}\): 4 giá trị.

Câu 24 Trắc nghiệm

Cho \(f\left( x \right)\) mà đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ bên

Bất phương trình \(f\left( x \right) > \sin \dfrac{{\pi x}}{2} + m\) nghiệm đúng với mọi \(x \in \left[ { - 1;3} \right]\) khi và chỉ khi:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

\(\begin{array}{l}f\left( x \right) > \sin \dfrac{{\pi x}}{2} + m\,\,\forall x \in \left[ { - 1;3} \right] \Leftrightarrow g\left( x \right) = f\left( x \right) - \sin \dfrac{{\pi x}}{2} > m\,\,\forall x \in \left[ { - 1;3} \right]\\ \Rightarrow m < \mathop {\min }\limits_{\left[ { - 1;3} \right]} g\left( x \right)\end{array}\).

Từ đồ thị hàm số \(y = f'\left( x \right)\) ta suy ra BBT đồ thị hàm số \(y = f\left( x \right)\) như sau:

Dựa vào BBT ta thấy \(f\left( x \right) \ge f\left( 1 \right)\,\,\forall x \in \left[ { - 1;3} \right]\).

\(\begin{array}{l}x \in \left[ { - 1;3} \right] \Rightarrow \dfrac{{\pi x}}{2} \in \left[ { - \dfrac{\pi }{2};\dfrac{{3\pi }}{2}} \right] \Rightarrow  - 1 \le \sin \dfrac{{\pi x}}{2} \le 1\\ \Leftrightarrow  - 1 \le  - \sin \dfrac{{\pi x}}{2} \le 1\end{array}\)

\( \Rightarrow f\left( 1 \right) - 1 \le f\left( x \right) - \sin \dfrac{{\pi x}}{2} \Leftrightarrow g\left( x \right) \ge f\left( 1 \right) - 1 \Rightarrow \mathop {\min }\limits_{\left[ { - 1;3} \right]} g\left( x \right) = f\left( 1 \right) - 1\).

Vậy \(m < f\left( 1 \right) - 1\).

Câu 25 Trắc nghiệm

Cho \(f\left( x \right) = \dfrac{1}{{{x^2} - 4x + 5}} - \dfrac{{{x^2}}}{4} + x\). Gọi \(M = \mathop {Max}\limits_{x \in \left[ {0;3} \right]} f\left( x \right);\) \(m = \mathop {Min}\limits_{x \in \left[ {0;3} \right]} f\left( x \right).\) Khi đó\(M-m\) bằng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có :

\[\begin{array}{l}f\left( x \right) = \dfrac{1}{{{x^2} - 4x + 5}} - \dfrac{{{x^2}}}{4} + x\\f\left( x \right) = \dfrac{1}{{{x^2} - 4x + 5}} - \dfrac{{{x^2} - 4x}}{4}\end{array}\]

Đặt \(t = {x^2} - 4x + 5\) với \(x \in \left[ {0;3} \right]\) ta có \(t' = 2x - 4 = 0 \Leftrightarrow x = 2 \in \left[ {0;3} \right]\).

Ta có : \(t\left( 0 \right) = 5;\,\,t\left( 2 \right) = 1,\,\,t\left( 3 \right) = 2\).

 \( \Rightarrow \) Với \(x \in \left[ {0;3} \right]\) thì \(t \in \left[ {1;5} \right]\), khi đó hàm số trở thành \(f\left( t \right) = \dfrac{1}{t} - \dfrac{{t - 5}}{4}\) với \(t \in \left[ {1;5} \right]\).

Ta có \(f'\left( t \right) =  - \dfrac{1}{{{t^2}}} - \dfrac{1}{4} < 0\,\,\forall t \in \left[ {1;5} \right]\).

\( \Rightarrow \) Hàm số \(y = f\left( t \right)\) nghịch biến trên \(\left[ {1;5} \right]\) \( \Rightarrow \left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = \mathop {\max }\limits_{\left[ {1;5} \right]} f\left( t \right) = f\left( 1 \right) = 2 = M\\\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = \mathop {\min }\limits_{\left[ {1;5} \right]} f\left( t \right) = f\left( 5 \right) = \dfrac{1}{5} = m\end{array} \right.\)

Vậy \(M - m = 2 - \dfrac{1}{5} = \dfrac{9}{5}\).

Câu 26 Trắc nghiệm

Cho hàm số \(f\left( x \right)\). Biết hàm số \(f'\left( x \right)\) có đồ thị như hình dưới đây. Trên đoạn \(\left[ { - 4;3} \right]\), hàm số \(g\left( x \right) = 2f\left( x \right) + {\left( {1 - x} \right)^2}\) đạt giá trị nhỏ nhất tại điểm

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \(g'\left( x \right) = 2f'\left( x \right) - 2\left( {1 - x} \right) = 2\left[ {f'\left( x \right) - \left( {1 - x} \right)} \right]\).

Xét \(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = 1 - x\), số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(y = f'\left( x \right)\) và đường thẳng \(y = 1 - x\).

Ta biểu diễn đường thẳng \(y = 1 - x\) trên hình vẽ:

Dựa vào đồ thị hàm số ta thấy \(f'\left( x \right) = 1 - x \Leftrightarrow \left[ \begin{array}{l}x =  - 4\\x =  - 1\\x = 3\end{array} \right.\)

Từ đó, ta suy ra bảng xét dấu \(g'\left( x \right)\) như sau:

Vậy hàm số đạt GTNN tại \(x =  - 1\).

Câu 27 Trắc nghiệm

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình bên:

Giá trị nguyên lớn nhất của tham số m để hàm số \(y = f\left( {\left| x \right| - m} \right)\) đồng biến trên khoảng \(\left( {10; + \infty } \right)\) là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có \(y = f\left( {\left| x \right| - m} \right) = f\left( {\sqrt {{x^2}}  - m} \right)\).

\( \Rightarrow y' = \dfrac{{2x}}{{2\sqrt {{x^2}} }}f'\left( {\sqrt {x^2} - m } \right) = \dfrac{x}{{\sqrt {{x^2}} }}f'\left( {\sqrt {x^2} - m } \right)\).

Để hàm số đồng biến trên \(\left( {10; + \infty } \right)\) thì \(y' \ge 0\,\,\forall x \in \left( {10; + \infty } \right)\).

\( \Rightarrow \dfrac{x}{{\sqrt {x^2} }}f'\left( {\sqrt {x^2} - m } \right) \ge 0\,\,\forall x \in \left( {10; + \infty } \right)\) \( \Rightarrow f'\left( {\sqrt {x^2} - m}  \right) \ge 0\,\,\forall x \in \left( {10; + \infty } \right)\,\,\left( * \right)\).

Dựa vào đồ thị hàm số ta thấy hàm số đồng biến trên \(\left( {1; + \infty } \right)\) và \(\left( { - \infty ; - 1} \right)\).

Do đó \(\left( * \right) \Leftrightarrow \left[ \begin{array}{l}\sqrt {{x^2}}  - m \ge 1\,\,\forall x \in \left( {10; + \infty } \right)\,\,\,\,\,\,\left( 1 \right)\\\sqrt {{x^2}}  - m \le  - 1\,\,\forall x \in \left( {10; + \infty } \right)\,\,\,\left( 2 \right)\end{array} \right.\)

Xét (1) ta có \(m \le \sqrt {{x^2}}  - 1\,\,\forall x \in \left( {10; + \infty } \right) \Rightarrow m \le \mathop {\min }\limits_{\left[ {10; + \infty } \right)} \left( {\sqrt {{x^2}}  - 1} \right)\).

Xét \(g\left( x \right) = \sqrt {{x^2}}  - 1\) trên khoảng \(\left( {10; + \infty } \right)\) ta có \(g'\left( x \right) = \dfrac{x}{{\sqrt {{x^2}} }} > 0\,\,\forall x \in \left( {10; + \infty } \right)\), do đó hàm số đồng biến trên \(\left( {10; + \infty } \right)\) \( \Rightarrow \mathop {\min }\limits_{\left[ {10; + \infty } \right)} \left( {\sqrt {{x^2}}  - 1} \right) = g\left( {10} \right) = 9 \Leftrightarrow m \le 9\).

Xét (2) ta có: \(m \ge \sqrt {{x^2}}  + 1\,\,\forall x \in \left( {10; + \infty } \right)\) \( \Rightarrow m \ge \mathop {\max }\limits_{\left[ {10; + \infty } \right)} \left( {\sqrt {{x^2}}  + 1} \right)\).

Do \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2}}  + 1} \right) =  + \infty \) nên hàm số đã cho không có GTLN trên \(\left[ {10; + \infty } \right)\), do đó không tồn tại m thỏa mãn (2).

Vậy \(m \le 9\) nên giá trị nguyên lớn nhất của m bằng 9.

Câu 28 Trắc nghiệm

Cho hàm số \(y = {x^3} - 3m{x^2} + 3\left( {{m^2} - 1} \right)x + 2020\). Có tất cả bao nhiêu giá trị nguyên của tham số m sao cho hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có: \(y' = 3{x^2} - 6mx + 3\left( {{m^2} - 1} \right)\).

Cho \(y' = 0 \Leftrightarrow 3{x^2} - 6mx + 3\left( {{m^2} - 1} \right) = 0\) \( \Leftrightarrow {x^2} - 2mx + {m^2} - 1 = 0\).

Ta có \(\Delta ' = {m^2} - {m^2} + 1 = 1 > 0\), khi đó phương trình \(y' = 0\) có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = m + 1\\{x_2} = m - 1\end{array} \right.\).

Ta có BBT:

Ta có:

\(\begin{array}{l}f\left( {m - 1} \right) = {m^3} - 3m + 2022\\f\left( {m + 1} \right) = {m^3} - 3m + 2018\end{array}\)

TH1: \(0 < m - 1 \Leftrightarrow m > 1\).

Ta có: \(f\left( 0 \right) = 2020\).

Để hàm số có GTNN trên \(\left( {0; + \infty } \right)\) thì \(f\left( {m + 1} \right) \le f\left( 0 \right) \Leftrightarrow {m^3} - 3m + 2018 \le 2020\) \( \Leftrightarrow {m^3} - 3m - 2 \le 0\).

Xét hàm số \(f\left( m \right) = {m^3} - 3m - 2\) ta có \(f'\left( m \right) = 3{m^2} - 3 = 0 \Leftrightarrow m =  \pm 1\),

BBT:

Dựa vào BT ta thấy \(f\left( m \right) \le 0 \Leftrightarrow m \le 2\).

Kết hợp điều kiện \( \Rightarrow 1 < m \le 2\).

TH2: \(m - 1 \le 0 < m + 1 \Leftrightarrow  - 1 < m \le 1\), khi đó hàm GTNN của hàm số trên \(\left( {0; + \infty } \right)\) là \(f\left( {m + 1} \right)\).

Kết hợp 2 trường hợp ta có: \(\left[ \begin{array}{l}1 < m \le 2\\ - 1 < m \le 1\end{array} \right.\). Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1;2} \right\}\).

Vậy có 3 giá trị của m thỏa mãn yêu cầu bài toán.

Câu 29 Trắc nghiệm

Cho các số thực \(x,\,\,y\) thay đổi thỏa mãn \({x^2} + 2{y^2} + 2xy = 1\) và hàm số \(f\left( t \right) = {t^4} - {t^2} + 2\). Gọi \(M,\,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \(Q = f\left( {\dfrac{{x + y + 1}}{{x + 2y - 2}}} \right)\). Tính \(M + m\)?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: \({x^2} + 2{y^2} + 2xy = 1 \Leftrightarrow {\left( {x + y} \right)^2} + {y^2} = 1\)

Đặt \(\left\{ \begin{array}{l}x + y = \sin \alpha \\y = {\rm{cos}}\alpha \end{array} \right.\). Ta có: \(Q = f\left( {\dfrac{{x + y + 1}}{{x + 2y - 2}}} \right) = f\left( {\dfrac{{\sin \alpha  + 1}}{{\sin \alpha  + {\rm{cos}}\,\alpha  - 2}}} \right)\)

Đặt \(t = \dfrac{{\sin \alpha  + 1}}{{\sin \alpha  + {\rm{cos}}\,\alpha  - 2}}\). Ta có: \(Q = f\left( {\dfrac{{\sin \alpha  + 1}}{{\sin \alpha  + {\rm{cos}}\,\alpha  - 2}}} \right) = f\left( t \right)\)

\(t = \dfrac{{\sin \alpha  + 1}}{{\sin \alpha  + {\rm{cos}}\,\alpha  - 2}}\,\,\left( {\alpha  \in \mathbb{R}} \right) \Leftrightarrow t\sin \alpha  + t{\rm{cos}}\,\alpha  - 2t = \sin \alpha  + 1 \Leftrightarrow \left( {t - 1} \right)\sin \alpha  + t\,{\rm{cos}}\,\alpha  = 2t + 1\) (*)

Để phương trình (*) tồn tại nghiệm \(\alpha \) thì \({\left( {t - 1} \right)^2} + {t^2} \ge {\left( {2t + 1} \right)^2}\)

\( \Leftrightarrow {t^2} - 2t + 1 + {t^2} \ge 4{t^2} + 4t + 1\)\( \Leftrightarrow 2{t^2} + 6t \le 0 \Leftrightarrow  - 3 \le t \le 0\)

Xét \(Q = f\left( t \right) = {t^4} - {t^2} + 2\) trên đoạn \(\left[ { - 3;0} \right]\), có: \(f'\left( t \right) = 4{t^3} - 2t,\,\,f'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t =  \pm \sqrt {\dfrac{1}{2}} \end{array} \right.\)

Hàm số \(f\left( t \right)\) liên tục trên \(\left[ { - 3;0} \right]\), có \(f\left( { - 3} \right) = 74,\,f\left( { - \sqrt {\dfrac{1}{2}} } \right) = \dfrac{7}{4},\,f\left( 0 \right) = 2\)\( \Rightarrow \mathop {\min }\limits_{\left[ { - 3;0} \right]} f\left( t \right) = \dfrac{7}{4},\,\mathop {\max }\limits_{\left[ { - 3;0} \right]} f\left( t \right) = 74\)

\( \Rightarrow \)M + m\( = \dfrac{7}{4} + 74 = \dfrac{{303}}{4}\).

Câu 30 Trắc nghiệm

Đề thi THPT QG - 2021 - mã 101

Trên đoạn \(\left[ {0;3} \right]\), hàm số \(y =  - {x^3} + 3x\) đạt giá trị lớn nhất tại điểm

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Khảo sát hàm số \(y =  - {x^3} + 3x\) trên \(\left[ {0;3} \right]\).

+ \(y' =  - 3{x^2} + 3 = 0 \Leftrightarrow x =  \pm 1\).

+ BBT:

 

\( \Rightarrow \) Hàm số đạt giá trị lớn nhất tại \(x = 1\).