Bài toán cực trị có tham số đối với một số hàm số cơ bản

Kỳ thi ĐGNL ĐHQG Hà Nội

Đổi lựa chọn

Câu 21 Trắc nghiệm

Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = \dfrac{{{x^2} + mx + 2m}}{{x + 1}}\) có hai điểm cực trị \(A,\,\,B\) và tam giác \(OAB\) vuông tại O. Tổng tất cả các phần tử của \(S\) là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

ĐKXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).

Ta có: \(y = \dfrac{{{x^2} + mx + 2m}}{{x + 1}} = x + m - 1 + \dfrac{{m + 1}}{{x + 1}}\).

\( \Rightarrow y' = 1 - \dfrac{{m + 1}}{{{{\left( {x + 1} \right)}^2}}} = \dfrac{{{x^2} + 2x - m}}{{{{\left( {x + 1} \right)}^2}}}\)

Để hàm số đã cho có 2 cực trị thì phương trình \(y' = 0\) phải có 2 nghiệm phân biệt khác \( - 1\).

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 1 + m > 0\\1 - 2 - m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >  - 1\\m \ne  - 1\end{array} \right. \Leftrightarrow m >  - 1.\)

Khi đó, giả sử \({x_1},\,\,{x_2}\) là nghiệm phân biệt của phương trình \(y' = 0\), áp dụng định lí Vi-ét ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 2\\{x_1}.{x_2} =  - m\end{array} \right..\)

Đặt \(A\left( {{x_1};{x_1} + m - 1 + \dfrac{{m + 1}}{{{x_1} + 1}}} \right),\,\,B\left( {{x_2};{x_2} + m - 1 + \dfrac{{m + 1}}{{{x_2} + 1}}} \right)\) là hai điểm cực trị của hàm số.

Để tam giác \(OAB\) vuông tại \(O\) thì  \(\overrightarrow {OA} .\overrightarrow {OB}  = 0\).

\(\begin{array}{l} \Leftrightarrow {x_1}.{x_2} + \left( {{x_1} + m - 1 + \dfrac{{m + 1}}{{{x_1} + 1}}} \right)\left( {{x_2} + m - 1 + \dfrac{{m + 1}}{{{x_2} + 1}}} \right) = 0\\ \Leftrightarrow 2{x_1}{x_2} + \left( {m - 1} \right)\left( {{x_1} + {x_2}} \right) + \left( {m + 1} \right)\left( {\dfrac{{{x_1}}}{{{x_2} + 1}} + \dfrac{{{x_2}}}{{{x_1} + 1}}} \right)\\\,\,\,\,\,\,\,\,\, + {\left( {m - 1} \right)^2} + \left( {{m^2} - 1} \right)\left( {\dfrac{1}{{{x_1} + 1}} + \dfrac{1}{{{x_2} + 1}}} \right) + \dfrac{{{{\left( {m + 1} \right)}^2}}}{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}} = 0\\ \Leftrightarrow 2{x_1}{x_2} + \left( {m - 1} \right)\left( {{x_1} + {x_2}} \right) + \left( {m + 1} \right)\dfrac{{x_1^2 + x_2^2 + {x_1} + {x_2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\\,\,\,\,\,\,\,\,\, + {\left( {m - 1} \right)^2} + \left( {{m^2} - 1} \right)\dfrac{{{x_1} + {x_2} + 2}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} + \dfrac{{{{\left( {m + 1} \right)}^2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} = 0\\ \Leftrightarrow 2{x_1}{x_2} + \left( {m - 1} \right)\left( {{x_1} + {x_2}} \right) + \left( {m + 1} \right)\dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2} + {x_1} + {x_2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\\,\,\,\,\,\,\,\,\, + {\left( {m - 1} \right)^2} + \left( {{m^2} - 1} \right)\dfrac{{{x_1} + {x_2} + 2}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} + \dfrac{{{{\left( {m + 1} \right)}^2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} = 0\\ \Leftrightarrow  - 2m - 2\left( {m - 1} \right) + \left( {m + 1} \right).\dfrac{{2 + 2m}}{{ - m - 1}} + {\left( {m - 1} \right)^2} + \dfrac{{{{\left( {m + 1} \right)}^2}}}{{ - m - 1}} = 0\\ \Leftrightarrow  - 2m - 2m + 2 - 2 - 2m + {m^2} - 2m + 1 - m - 1 = 0\\ \Leftrightarrow {m^2} - 9m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 9\end{array} \right.\,\,\left( {tm} \right)\end{array}\)

\( \Rightarrow S = \left\{ {0;9} \right\}\).

Vậy tổng tất cả các phần tử của S là \(9\).

Câu 22 Trắc nghiệm

Có bao nhiêu giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\) có hai điểm cực trị nằm về hai phía của trục hoành.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Để đồ thị hàm số \(y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\) có hai điểm cực trị nằm về hai phía của trục hoành thì phương trình \(m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1 = 0\,\,\left( * \right)\) phải có 3 nghiệm phân biệt.

Ta có:

\(\begin{array}{l}\,\,\,\,\,m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1 = 0\\ \Leftrightarrow \left( {x - 1} \right)\left[ {m{x^2} - \left( {m - 1} \right)x + m + 1} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\m{x^2} - \left( {m - 1} \right)x + m + 1 = 0\,\,\,\left( {**} \right)\end{array} \right.\end{array}\)

Để (*) có ba nghiệm phân biệt thì (**) phải có 2 nghiệm phân biệt khác 1.

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m.1 - \left( {m - 1} \right).1 + m + 1 \ne 0\\\Delta  = {\left( {m - 1} \right)^2} - 4m\left( {m + 1} \right) > 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m - m + 1 + m + 1 \ne 0\\{m^2} - 2m + 1 - 4{m^2} - 4m > 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \ne  - 2\\ - 3{m^2} - 6m + 1 > 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \ne  - 2\\\dfrac{{ - 3 - 2\sqrt 3 }}{3} < m < \dfrac{{ - 3 + 2\sqrt 3 }}{3}\end{array} \right.\end{array}\)

Mà \(m \in \mathbb{Z}\) \( \Rightarrow m =  - 1\).

Vậy có 1 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Câu 23 Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\) có 5 điểm cực trị?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét hàm số \(f\left( x \right) = 3{x^4} - 4{x^3} - 12{x^2}\) ta có

\(\begin{array}{l}f'\left( x \right) = 12{x^3} - 12{x^2} - 24x\\f'\left( x \right) = 0 \Leftrightarrow 12{x^3} - 12{x^2} - 24x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 1\\x = 2\end{array} \right.\end{array}\)

BBT:

Ta có đồ thị \(y = f\left( x \right)\,\,\left( C \right)\) như sau:

Để \(y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\) có 5 điểm cực trị thì:

TH1: \(\left( C \right)\) cắt đường thẳng \(y =  - m\) tại 2 điểm phân biệt khác cực trị

\( \Leftrightarrow \left[ \begin{array}{l} - m > 0\\ - 32 <  - m <  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m < 0\\5 < m < 32\end{array} \right.\)

Mà \(m \in {\mathbb{Z}^ + }\, \Rightarrow m \in \left\{ {6;7;...;31} \right\}\) : 26 giá trị.

TH2: \(\left( C \right)\) cắt đường thẳng \(y =  - m\) tại 3 điểm phân biệt, trong đó có 1 cực trị

\( \Leftrightarrow \left[ \begin{array}{l} - m = 0\\ - m =  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\,(L)\\m = 5\,(TM)\end{array} \right.\)

Vậy, có tất cả 27 giá trị của m thỏa mãn.

Câu 24 Trắc nghiệm

Cho hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} + m{x^2} + \left( {{m^2} - 4} \right)x + 1\). Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = f\left( {\left| x \right|} \right)\) có đúng 3 điểm cực trị?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Bước 1:

Số điểm cực trị của hàm số \(y = f\left( {\left| x \right|} \right)\) là \(2m + 1\) trong đó \(m\) là số điềm cực trị dương của hàm số \(y = f\left( x \right)\).

Do đó để hàm số \(y = f\left( {\left| x \right|} \right)\) có đúng 3 điểm cực trị thì \(m = 1 \Rightarrow \) hàm số \(y = f\left( x \right)\) phải có 1 điểm cực trị dương (*).

Bước 2:

Ta có: \(f'\left( x \right) = {x^2} + 2mx + {m^2} - 4\).

Xét \(f'\left( x \right) = 0\) có \(\Delta ' = {m^2} - {m^2} + 4 > 0\,\,\forall m\) nên \(f'\left( x \right) = 0\) có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} =  - m + 2\\{x_2} =  - m - 2\end{array} \right.\).

Bước 3:

\(\left( * \right) \Rightarrow  - m - 2 \le 0 <  - m + 2 \Leftrightarrow  - 2 \le m < 2\).

Mà \(m \in \mathbb{Z}\) \( \Rightarrow m \in \left\{ { - 2; - 1;0;1} \right\}\).

Vậy có 4 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Câu 25 Tự luận

Gọi k là số giá trị nguyên của tham số \(m\) để hàm số \(y = \dfrac{1}{3}{x^3} - {x^2} \)\(+ \left( {{m^2} - 8m + 16} \right)x - 31\) có cực trị. Tìm k.

Đáp án: 

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: 

Ta có: \(y' = {x^2} - 2x + {m^2} - 8m + 16\).

Để hàm số đã cho có cực trị thì phương trình \(y' = 0\) phải có 2 nghiệm phân biệt.

\(\begin{array}{l} \Rightarrow \Delta ' = 1 - {m^2} + 8m - 16 > 0\\ \Leftrightarrow  - {m^2} + 8m - 15 > 0\\ \Leftrightarrow 3 < m < 5\end{array}\)

Mà \(m \in \mathbb{Z} \Rightarrow m = 4\).

Vậy có 1 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

$=>k=1$

Câu 26 Tự luận

Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y =  - {x^3} - 3{x^2} + mx + 2\) có cực đại và cực tiểu?

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

Để hàm số \(y =  - {x^3} - 3{x^2} + mx + 2\) có cực đại và cực tiểu thì phương trình \(y' =  - 3{x^2} - 6x + m = 0\) phải có 2 nghiệm phân biệt \( \Rightarrow \Delta ' = 9 + 3m > 0 \Leftrightarrow m >  - 3\).