Kết quả:
0/50
Thời gian làm bài: 00:00:00
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Khoảng cách giữa hai mặt phẳng \((ACD')\) và \((BA'C')\) bằng
Đạo hàm của hàm số \(f\left( x \right) = {\left( {{x^2} + 1} \right)^4}\) tại điểm \(x = - 1\) là:
Trong các mệnh đề sau, mệnh đề nào đúng?
Cho phương trình \(2{x^4} - 5{x^2} + x + 1 = 0\,\,\,\left( 1 \right)\). Trong các mệnh đề sau, mệnh đề nào đúng?
Cho hình chóp \(S.ABCD\)có đáy là hình vuông cạnh \(a\). Đường thẳng \(SA\) vuông góc với mặt phẳng đáy. Gọi \(M\) là trung điểm của \(CD\). Khoảng cách từ \(M\) đến \(SA\) nhận giá trị nào trong các giá trị sau?
Cho hàm số \(f\left( x \right) =\) \( \left\{ \begin{array}{l}\dfrac{{\tan x}}{x}\,\,\,khi\,\,x \ne 0,x \ne \dfrac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right)\\0\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\). Hàm số \(y = f\left( x \right)\) liên tục trên các khoảng nào sau đây?
Cho $a,b,c$ là các đường thẳng trong không gian. Tìm mệnh đề sai trong các mệnh đề sau.
Cho tứ diện \(ABCD\) có \(AB,\,\,BC,\,\,CD\) đôi một vuông góc với nhau và \(AB = a\), \(BC = b,\,\,\,CD = c\). Độ dài đoạn thẳng \(AD\) bằng
Giá trị của \(A = \lim \dfrac{{2n + 1}}{{1 - 3n}}\) bằng:
Trong các mệnh đề sau, mệnh đề nào sai?
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\) và \(SA = SB = SC = b\). Gọi \(G\) là trọng tâm \(\Delta ABC\). Độ dài \(SG\) là:
Cho hình chóp $S.ABC$ trong đó $SA,{\rm{ }}AB,{\rm{ }}BC$ đôi một vuông góc và $SA = AB = BC = 1.$ Khoảng cách giữa hai điểm $S$ và $C$ nhận giá trị nào trong các giá trị sau ?
Cho hình chóp đều $S.ABCD$ có tất cả các cạnh bằng $a$. Gọi $M$ là trung điểm $SC$. Tính góc $\varphi $ giữa hai mặt phẳng $\left( {MBD} \right)$ và $\left( {ABCD} \right)$.
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $C$, mặt bên $SAC$ là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi $I$ là trung điểm của $SC$. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
$\left( I \right):AI \bot SC$
$\left( {II} \right):\,\,\left( {SBC} \right) \bot \left( {SAC} \right)$
$\left( {III} \right):\,\,AI \bot BC$
$\left( {IV} \right):\,\,\left( {ABI} \right) \bot \left( {SBC} \right)$
Trong các mệnh đề dưới đây mệnh đề đúng là?
Cho hình chóp \(S.ABC\) có \(AB = AC\) và \(\widehat {SAC} = \widehat {SAB}\). Tính số đo của góc giữa hai đường thẳng chéo nhau \(SA\) và \(BC.\)
Cho đường cong $\left( C \right):y = {x^2}$. Phương trình tiếp tuyến của $\left( C \right)$ tại điểm $M\left( {-1;1} \right)$ là
Cho hàm số \(f\left( x \right) = \dfrac{{{x^2} + 1}}{{{x^2} + 5x + 6}}\). Hàm số \(f\left( x \right)\) liên tục trên khoảng nào sau đây?
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác cạnh $BC = a,\,\,AC = 2a\sqrt 2 $, góc $\widehat {ACB} = {45^0}$. Cạnh bên $SB$ vuông góc với mặt phẳng $(ABC).$ Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBC).$
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a.$ Cạnh bên $SA$ vuông góc với $mp\,\,\left( {ABCD} \right),\,\,SA = a\sqrt 2 .$ Gọi $\left( \alpha \right)$ là mặt phẳng qua $A$ và vuông góc với $SB.$ Mặt phẳng $\left( \alpha \right)$ cắt hình chóp theo một thiết diện có diện tích $S.$ Tính $S$ theo $a.$
Cho hàm số $f\left( x \right) = 2{x^2} + 16\cos x - \cos 2x$. Tính giá trị của $f''\left( \pi \right).$
Trong các mệnh đề sau mệnh đề nào đúng?
Tính $\mathop {\lim }\limits_{x \to 2} \dfrac{{x - \sqrt {x + 2} }}{{\sqrt {4x + 1} - 3}}$ bằng?
Cho hai đường thẳng \(a,b\) và \(mp\left( P \right)\). Chỉ ra mệnh đề đúng trong các mệnh đề sau:
Hàm số \(y = x\sqrt {{x^2} + 1} \) có đạo hàm cấp hai bằng:
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cân tại $B$, $SA$ vuông góc với đáy. Gọi $M$ là trung điểm $AC$. Khẳng định nào sau đây sai?
Cho dãy số $({u_n})$ xác định bởi $\left\{ \begin{align} & u_{1}=2 \\ & {u_{n+1}}=\dfrac{{{u}_{n}}+1}{2},(n\ge 1) \end{align} \right.$ Khi đó mệnh đề nào sau đây là đúng?
Kết quả của giới hạn $\,\mathop {\lim }\limits_{x \to + \infty } x\sqrt {\dfrac{{2x + 1}}{{3{x^3} + {x^2} + 2}}} $ là:
Cho $a$ và $b$ là các số thực khác $0.$ Tìm hệ thức liên hệ giữa $a$ và $b$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1} - 1}}{x}\,\,\,khi\,\,x \ne 0\\4{x^2} + 5b\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) liên tục tại $x = 0.$
Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 1\). Đạo hàm của hàm số f(x) âm khi và chỉ khi
Cho hàm số \(y = {\left( {\dfrac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right)^2}\). Đạo hàm của hàm số \(f\left( x \right)\) là:
Nếu $f''\left( x \right) = \dfrac{{2\sin x}}{{{{\cos }^3}x}}$, thì $f(x)$ bằng:
Số tiếp tuyến đi qua điểm \(A\left( {1; - 6} \right)\) của đồ thị hàm số \(y = {x^3} - 3x + 1\) là:
Cho đồ thị hàm số $\left( C \right):\,\,y = \dfrac{{x + 1}}{{x - 2}}$ và đường thẳng \(d:\,\,y = x + m\). Khi đường thẳng cắt đồ thị \(\left( C \right)\) tại hai điểm phân biệt và tiếp tuyến với \(\left( C \right)\) tại hai điểm này song song với nhau thì $m$ sẽ thuộc khoảng nào sau đây ?
Cho hình lập phương $ABCD.EFGH$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {DH} \)?
Trong không gian cho tam giác \(ABC\). Tìm \(M\) sao cho giá trị của biểu thức \(P = M{A^2} + M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất.
Cho hình chóp $S.ABCD$, có đáy $ABCD$ là hình chữ nhật. Cạnh bên $SA$ vuông góc với đáy, $SA = AB = a$ và $AD = x.a$. Gọi $E$ là trung điểm của $SC$. Tìm $x$, biết khoảng cách từ điểm $E$ đến mặt phẳng $\left( {SBD} \right)$ bằng $h = \dfrac{a}{3}$.
Cho hình chóp $S.ABC$ thỏa mãn $SA{\rm{ }} = {\rm{ }}SB{\rm{ }} = {\rm{ }}SC$. Tam giác $ABC$ vuông tại $A$. Gọi $H$ là hình chiếu vuông góc của $S$ lên $mp\left( {ABC} \right)$. Chọn khẳng định sai trong các khẳng định sau?
Cho hình thoi $ABCD$ có tâm $O,\widehat {ADC} = {60^0},AC = 2a$. Lấy điểm $S$ không thuộc $\left( {ABCD} \right)$ sao cho $SO \bot \left( {ABCD} \right)$. Gọi \(\alpha \) là góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABCD} \right)\) và \(\tan \alpha = \dfrac{1}{2}\). Gọi \(\beta \) là góc giữa $SC$ và $\left( {ABCD} \right)$, chọn mệnh đề đúng :
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông. Mặt bên \(SAB\) là tam giác đều có đường cao \(SH\) vuông góc với \(mp(ABCD)\). Gọi \(\alpha \) là góc giữa \(BD\) và \(mp(SAD)\). Chọn khẳng định đúng trong các khẳng định sau?
Giá trị của giới hạn $\,\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 3x} - \sqrt {{x^2} + 4x} } \right)$ là:
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB = AC = a$. Hình chiếu vuông góc $H$ của $S$ trên mặt đáy $\left( {ABC} \right)$ trùng với tâm đường tròn ngoại tiếp tam giác $ABC$ và $SH = \dfrac{{a\sqrt 6 }}{2}$. Gọi $\varphi $ là góc giữa hai đường thẳng $SB$ và $AC$. Mệnh đề nào sau đây đúng?
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 4,{\rm{ }}AD = 3.\) Mặt phẳng \((ACD')\) tạo với mặt đáy một góc \({60^ \circ }.\) Tính khoảng cách giữa hai mặt đáy của hình hộp.
Cho hình lăng trụ đều \(ABC.A'B'C'\) có tất cả các cạnh bằng a. Gọi M là trung điểm của cạnh BC. Khoảng cách giữa hai đường thẳng AM và B’C là :
Cho \(a, b\) là các số thực khác \(0\). Tìm hệ thức liên hệ giữa \(a\) và \(b\) để hàm số sau liên tục tại \(x = 0\): \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1} \sqrt[3]{{bx + 1}} - 1}}{x}\,\,\,\,\,khi\,x \ne 0\\a + b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\)
Cho hàm số \(y = \dfrac{{x + 2}}{{x - 1}}\) có đồ thị \(\left( C \right)\). Gọi $d$ là khoảng cách từ điểm \(A\left( {1;1} \right)\) đến một tiếp tuyến bất kỳ của đồ thị \(\left( C \right)\). Tìm giá trị lớn nhất của $d$?
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật với $AC = 2a,{\rm{ }}BC = a$. Đỉnh $S$ cách
đều các điểm $A,{\rm{ }}B,{\rm{ }}C$. Tính khoảng cách \(d\) từ trung điểm $M$ của $SC$ đến mặt phẳng $\left( {SBD} \right)$.
Tìm tất cả các giá trị của \(a\) để $\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {2{x^2} + 1} + ax} \right)$ là \( + \infty .\)
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cân tại $C$. Gọi $H$ là trung điểm $AB$. Biết rằng $SH$ vuông góc với mặt phẳng $\left( {ABC} \right)$ và $AB = SH = a.$ Tính cosin của góc $\alpha $ tọa bởi hai mặt phẳng $\left( {SAB} \right)$ và $\left( {SAC} \right)$.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật, $AB = a.$ Tam giác $SAB$ đều và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng $SD$ và mặt phẳng $\left( {ABCD} \right)$ bằng ${30^0}.$ Tính diện tích hình chữ nhật $ABCD.$