Kết quả:
0/50
Thời gian làm bài: 00:00:00
Trong các hình sau:
Các hình có thể là hình biểu diễn của một hình tứ diện là:
Bất đẳng thức nào sau đây đúng? Với mọi số tự nhiên $n$ thỏa \(n \ge 3\) thì:
Cho tứ diện $ABCD.$ $E, F$ lần lượt là các điểm nằm trong các tam giác $BCD$ và $ACD.$ $M, N, P, Q$ lần lượt là giao của $DE$ và $BC, DF$ và $AC, CE$ và $BD, CF$ và $AD.$ Khi đó giao điểm của $EF$ và $(ABC)$ là:
Trong một lớp có $17$ bạn nam và $11$ bạn nữ. Hỏi có bao nhiêu cách chọn ra một bạn làm lớp trưởng?
Tìm hệ số của ${x^{12}}$ trong khai triển ${\left( {2x - {x^2}} \right)^{10}}.$
Cho cấp số cộng \({u_1};\,{\rm{ }}{u_2};{\rm{ }}{u_3};{\rm{ }} \cdots ;{\rm{ }}{u_n}\) có công sai \(d,\) các số hạng của cấp số cộng đã cho đều khác \(0.\) Với giá trị nào của \(d\) thì dãy số \(\dfrac{1}{{{u_1}}};\,{\rm{ }}\dfrac{1}{{{u_2}}};{\rm{ }}\dfrac{1}{{{u_3}}};{\rm{ }} \cdots ;{\rm{ }}\dfrac{1}{{{u_n}}}\) là một cấp số cộng?
Trong mặt phẳng tọa độ $Oxy$ cho hai điểm \(M\left( {4;6} \right)\,\)và \(M'\left( { - 3;5} \right)\). Phép vị tự tâm \(I\), tỉ số \(k = \dfrac{1}{2}\) biến điểm \(M\) thành \(M'\). Tìm tọa độ tâm vị tự \(I.\)
Hàm số \(y = \dfrac{{1 - \sin 2x}}{{\cos 3x - 1}}\) xác định trên:
Nghiệm của phương trình \(2\cos x - 1 = 0\) là:
Cho hai đường thẳng cắt nhau $d$ và $d'$. Có bao nhiêu phép tịnh tiến biến đường thẳng $d$ thành đường thẳng $d'$?
Có bao nhiêu số có \(3\) chữ số được lập thành từ các chữ số \(3,2,1\)?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Một mặt phẳng (P) đồng thời song song với AC và SB lần lượt cắt các đoạn thẳng SA, AB, BC, SC, SD và BD tại M, N, E, F, I, J. Xét các khẳng định sau:
(1) MN // (SCD) (2) EF // (SAD)
(3) NE // (SAC) (3) IJ // (SAB)
Có bao nhiêu khẳng định đúng?
Có hai hộp đựng bi. Hộp I có 9 viên bi được đánh số \(1,{\rm{ }}2,{\rm{ }} \ldots ,{\rm{ }}9\) . Lấy ngẫu nhiên mỗi hộp một viên bi. Biết rằng xác suất để lấy được viên bi mang số chẵn ở hộp II là \(\dfrac{3}{{10}}\). Xác suất để lấy được cả hai viên bi mang số chẵn là:
Cho phương trình \(A_x^3 + 2C_{x + 1}^{x - 1} - 3C_{x - 1}^{x - 3} = 3{x^2} + {P_6} + 159\). Giả sử \(x = {x_0}\) là nghiệm của phương trình trên, lúc này ta có:
Hai bạn Công và Thành cùng viết ngẫu nhiên ra một số tự nhiên gồm 2 chữ số phân biệt. Xác suất để hai số được viết ra có ít nhất một chữ số chung bằng:
Dùng quy nạp chứng minh mệnh đề chứa biến \(P\left( n \right)\) đúng với mọi số tự nhiên $n \ge p$ (\(p\) là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề \(P\left( n \right)\) đúng với \(n = k\). Khẳng định nào sau đây là đúng?
Giả sử $Q$ là tập con của tập hợp các số nguyên dương sao cho
a) \(k \in Q\)
b) \(n \in Q \Rightarrow n + 1 \in Q\,\,\forall n \ge k.\)
Chọn mệnh đề đúng:
Khẳng định nào sau đây sai ?
Cho điểm $A$ không nằm trên mặt phẳng $\left( \alpha \right)$ chứa tam giác $BCD.$ Lấy $E,\,\,F$ là các điểm lần lượt nằm trên các cạnh $AB,\,\,AC.$ Khi $EF$ và $BC$ cắt nhau tại $I,$ chọn kết luận không đúng:
Cho hình chóp $S.ABCD.$ Gọi $M, N $ lần lượt là trọng tâm của tam giác $SAB$ và $ABC.$ Khi đó $MN$ song song với
Hàm số nào dưới đây là hàm số chẵn?
Trong mặt phẳng tọa độ $Oxy$, nếu phép đối xứng trục biến điểm $M\left( {2;3} \right)$ thành $M'\left( {3;2} \right)$ thì nó biến điểm $C\left( {1; - 6} \right)$ thành điểm:
Cho các mệnh đề sau:
a. Nếu $a // (P)$ thì $a$ song song với mọi đường thẳng nằm trong $(P).$
b. Nếu $a // (P)$ thì $a$ song song với một đường thẳng nào đó nằm trong $(P).$
c. Nếu $a // (P)$ thì có vô số đường thẳng nằm trong $(P)$ và song song với $a$
d. Nếu $a // (P)$ thì có một đường thẳng $d$ nào đó nằm trong $(P)$ sao cho $a$ và $d$ đồng phẳng.
Số mệnh đề đúng là:
Ảnh $A'$ của $A\left( {4; - 3} \right)$ qua phép đối xứng trục $d$ với \(d:2x\; - y = 0\) có tọa độ là:
Phương trình \(\tan \dfrac{x}{2} = \tan x\) có nghiệm:
Với giá trị nào của \(m\) dưới đây thì phương trình \(\sin x = m\) có nghiệm?
Gieo một con xúc sắc hai lần. Biến cố \(A\) là biến cố để hai lần gieo có ít nhất một mặt \(6\) chấm. Các phần tử của \({\Omega _A}\) là:
Tìm giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = 3 - 2{\cos ^2}3x\):
Phương trình \(\sqrt 3 \sin 2x - \cos 2x + 1 = 0\) có nghiệm là:
Tập nghiệm của phương trình \(\tan x.\cot x = 1\) là:
Số vị trí biểu diễn nghiệm của phương trình \(\sin x + \left( {\sqrt 3 - 2} \right)\cos x = 1\) trên đường tròn lượng giác là:
Phương trình \(2\sqrt 3 {\cos ^2}x + 6\sin x\cos x = 3 + \sqrt 3 \) có mấy họ nghiệm?
Có bao nhiêu cách sắp xếp $3$ nữ sinh, $3$ nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẻ:
Cho $8$ bạn học sinh $A,B,C,D,E,F,G,H$. Hỏi có bao nhiêu cách xếp $8$ bạn đó ngồi xung quanh một bàn tròn có $8$ ghế.
Giá trị của biểu thức \(A_{n + k}^{n + 1} + A_{n + k}^{n + 2}\) bằng biểu thức nào sau đây?
Số nguyên dương \(n\) thỏa mãn \(C_n^0 + 2C_n^1 + {2^2}C_n^2 + {2^3}C_n^3 + ... + {2^{n - 2}}C_n^{n - 2} + {2^{n - 1}}C_n^{n - 1} + {2^n}C_n^n = 243\) là:
Gieo đồng xu cân đối và đồng chất \(5\) lần liên tiếp. Xác suất để được ít nhất một lần xuất hiện mặt sấp là:
Gieo hai con súc xắc cân đối và đồng chất. Xác suất để hiệu số chấm trên mặt xuất hiện của hai con súc xắc bằng 2 là:
Độ dài $3$ cạnh của một tam giác vuông lập thành một cấp số cộng . Nếu trung bình cộng ba cạnh bằng $6$ thì công sai của cấp số cộng này là:
Trong mặt phẳng tọa độ \(Oxy\) cho vectơ $\vec v = \left( { - 3; - 2} \right)$. Phép tịnh tiến theo vectơ $\overrightarrow v $ biến đường tròn $\left( C \right):{x^2} + {\left( {y - 1} \right)^2} = 1$ thành đường tròn $\left( {C'} \right)$. Mệnh đề nào sau đây đúng?
Phép vị tự nào sau đây biến đường tròn \(\left( C \right):\,\,{\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 4\) thành đường tròn \(\left( {C'} \right):\,\,{\left( {x - 5} \right)^2} + {\left( {y - 3} \right)^2} = 4\) ?
Cho tứ diện \(ABCD.\) Gọi \(M,{\rm{ }}N\) lần lượt là trung điểm của \(AC,{\rm{ }}CD.\) Giao tuyến của hai mặt phẳng \(\left( {MBD} \right)\) và \(\left( {ABN} \right)\) là:
Cho tứ diện \(ABCD\). Gọi \(H\), \(K\) lần lượt là trung điểm các cạnh \(AB\), \(BC\). Trên đường thẳng \(CD\) lấy điểm \(M\) nằm ngoài đoạn \(CD\). Thiết diện của tứ diện với mặt phẳng \(\left( {HKM} \right)\) là:
Cho tứ diện đều $SABC.$ Gọi $I$ là trung điểm của $AB, M $ là một điểm di động trên đoạn $AI.$ Gọi $(P)$ là mặt phẳng qua $M$ và song song với $SI, IC,$ biết $AM = x.$ Thiết diện tạo bởi $mp(P)$ và tứ diện $SABC $ có chu vi là:
Biểu thức \(2C_n^k + 5C_n^{k + 1} + 4C_n^{k + 2}+C_n^{k+3}\) bằng biểu thức nào sau đây?
Tìm tập giá trị nhỏ nhất, giá trị lớn nhất của hàm số sau
\(y = 3{\left( {3\sin x + 4\cos x} \right)^2} + 4\left( {3\sin x + 4\cos x} \right) + 1\)
Gieo ba con xúc sắc cân đối, đồng chất. Xác suất để số chấm xuất hiện trên ba con xúc sắc đó bằng nhau là:
Cho đường tròn \(\left( {O;R} \right)\) và một điểm $A$ cố định. Một điểm $M$ thay đổi trên \(\left( {O;R} \right)\), gọi $N$ là trung điểm của đoạn thẳng $AM$ . Khi $M$ thay đổi trên \(\left( {O;R} \right)\), tập hợp các điểm $N$ là:
Tìm tất cả các giá trị của tham số $m$ để phương trình sau có ba nghiệm phân biệt lập thành một cấp số cộng : \({x^3} - 3m{x^2} + 2m\left( {m - 4} \right)x + 9{m^2} - m = 0\) ?