Kết quả:
0/25
Thời gian làm bài: 00:00:00
Khẳng định nào sau đây đúng về phép quay :
Trong hệ trục tọa độ $Oxy$ cho điểm \(I\left( {a;b} \right)\). Nếu phép đối xứng tâm $I$ biến điểm \(M\left( {x;y} \right)\) thành điểm \(M'\left( {x';y'} \right)\) thì ta có biểu thức
Trong mặt phẳng tọa độ \(Oxy\) cho phép vị tự \(V\) tỉ số \(k = 2\) biến điểm \(A\left( {1; - 2} \right)\) thành điểm \(A'\left( { - 5;1} \right).\) Hỏi phép vị tự \(V\) biến điểm \(B\left( {0;1} \right)\) thành điểm có tọa độ nào sau đây?
Chọn khẳng định sai trong các khẳng định sau:
Phép vị tự tâm \(O\) tỉ số \( - 3\) lần lượt biến hai điểm \(A,{\rm{ }}B\) thành hai điểm \(C,{\rm{ }}D\). Mệnh đề nào sau đây đúng?
Cho phép quay \(Q\left( {O;\alpha } \right)\) biến điểm $A$ thành điểm $M$ và các khẳng định sau:
a) $O$ cách đều $A$ và $M$
b) $O$ thuộc đường tròn đường kính $AM$.
c) Góc lượng giác \((OA,OM) = \alpha \)
Số khẳng định đúng là:
Gọi $m$ là ảnh của đường thẳng $d$ qua phép quay tâm $I$ góc quay \(\alpha \) (biết rằng $I$ không nằm trên $d$), đường thẳng $d$ song song với $m$ khi:
Trong mặt phẳng với hệ tọa độ $Oxy$ , cho $T$ là một phép tịnh tiến theo vectơ $\overrightarrow u $ biến điểm $M\left( {x;y} \right)$ thành điểm $M'\left( {x';y'} \right)$ với biểu thức tọa độ là: $x = x' + 3;\,\,y = y' - 5$. Tọa độ của vectơ tịnh tiến $\overrightarrow u $ là:
Cho hai đường thẳng song song $a$ và $b$, một đường thẳng $c$ không song song với chúng. Có bao nhiêu phép tịnh tiến biến đường thẳng $a$ thành đường thẳng $b$ và biến đường thẳng $c$ thành chính nó?
Trong mặt phẳng tọa độ $Oxy$ cho hai đường thẳng song song $a$ và $b$ lần lượt có phương trình là \(3x + 4y - 1 = 0\) và \(3x + 4y + 5 = 0\). Nếu phép đối xứng tâm biến a thành b thì tâm đối xứng phải là điểm nào trong các điểm sau đây ?
Trong mặt phẳng tọa độ \(Oxy\) cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 4\). Phép đối xứng trục \(Ox\) biến đường tròn \(\left( C \right)\) thành đường tròn \(\left( {C'} \right)\) có phương trình là:
Cho hai tròn ngoài nhau \(\left( {I;R} \right)\) và \(\left( {I';R'} \right)\) với \(R \ne R'\) . Khẳng định nào sau đây là sai ?
Ảnh $A'$ của $A\left( {4; - 3} \right)$ qua phép đối xứng trục $d$ với \(d:2x\; - y = 0\) có tọa độ là:
Khẳng định nào sau đây sai ?
Có bao nhiêu phép đối xứng tâm biến một đường thẳng \(a\) cho trước thành chính nó?
Trong mặt phẳng tọa độ $Oxy$, nếu phép tịnh tiến biến điểm \(A\left( {2; - 1} \right)\) thành điểm \(A'\left( {3;0} \right)\) thì nó biến đường thẳng nào sau đây thành chính nó?
Trong mặt phẳng với hệ tọa độ $Oxy$, cho parabol $\left( P \right)$ có phương trình $y = {x^2} - x + 1$. Thực hiện liên tiếp hai phép tịnh tiến theo các vectơ $\overrightarrow u = \left( {1; - 2} \right)$ và $\overrightarrow v = \left( {2;3} \right)$, parabol $\left( P \right)$ biến thành parabol $\left( Q \right)$ có phương trình là:
Trên tia phân giác ngoài $Cx$ của góc $C$ của tam giác $ABC$ lấy điểm $M$ không trùng với $C$ . Tìm mệnh đề đúng nhất ?
Trong mặt phẳng \(Oxy\), tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\): \({x^2} + {y^2} = 1\) qua phép đối xứng tâm \(I\left( {1;\;0} \right)\).
Cho lục giác đều $ABCDEF$, tâm $O$, các đỉnh được đặt theo thứ tự đó và cùng chiều kim đồng hồ. Thực hiện lần lượt phép quay tâm $O$ góc quay \({60^0}\) và phép tịnh tiến theo vector \(\overrightarrow {OC} \) thì ảnh của tam giác $ABO$ là:
Khẳng định nào sai ?
Trong mặt phẳng tọa độ $Oxy$ cho \(A\left( {1;2} \right),B\left( { - 3;1} \right)\). Phép vị tự tâm \(I\left( {2; - 1} \right)\) tỉ số $k = 2$ biến điểm $A$ thành $A'$ , phép đối xứng tâm $B$ biến $A'$ thành $B'$ . Tọa độ điểm $B'$ là:
Trong mặt phẳng tọa độ $Oxy$. Cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt có phương trình \(x - 2y + 1 = 0\) và \(x - 2y + 4 = 0\), điểm \(I\left( {2;1} \right)\). Phép vị tự tâm $I$ tỉ số $k$ biến đường thẳng \({\Delta _1}\) thành \({\Delta _2}\) khi đó giá trị của $k$ là :
Cho đường tròn \(\left( {O;R} \right)\) và một điểm $A$ cố định. Một điểm $M$ thay đổi trên \(\left( {O;R} \right)\), gọi $N$ là trung điểm của đoạn thẳng $AM$ . Khi $M$ thay đổi trên \(\left( {O;R} \right)\), tập hợp các điểm $N$ là:
Cho tam giác $ABC$ và đường tròn tâm $O$. Trên đoạn $AB$, lấy điểm $E$ sao cho $BE = 2AE,F$ là trung điểm của $AC$ và $I$ là đỉnh thứ tư của hình bình hành $AEIF$. Với mỗi điểm $P$ trên $\left( O \right)$ ta dựng điểm $Q$ sao cho \(\overrightarrow {PA} + 2\overrightarrow {PB} + 3\overrightarrow {PC} = 6\overrightarrow {IQ} \). Khi đó tập hợp điểm $Q$ khi $P$ thay đổi là: