Kết quả:
0/25
Thời gian làm bài: 00:00:00
Hàm số \(y = \sqrt {2x + 5} \) có đạo hàm cấp hai bằng
Cho hàm số \(y = \dfrac{{{x^2} + x}}{{x - 2}}\) đạo hàm của hàm số tại \(x = 1\) là:
Cho hàm số \(y = \dfrac{{2{x^2} + 3x - 1}}{{{x^2} - 5x + 2}}\). Đạo hàm y’ của hàm số là:
Hàm số \(y{\rm{ }} = \dfrac{{{x^2} + x + 1}}{{x + 1}}\) có đạo hàm cấp 5 bằng:
Cho hàm số \(y = \sin x\). Chọn câu sai ?
Cho hàm số $y = \dfrac{1}{3}{x^3}-3{x^2} + 7x + 2$ . Phương trình tiếp tuyến tại điểm có tung độ bằng \(2\) là:
Xét \(y = f\left( x \right) = \cos \left( {2x - \dfrac{\pi }{3}} \right)\). Phương trình \({f^{\left( 4 \right)}}\left( x \right) = - 8\) có nghiệm \(x \in \left[ {0;\dfrac{\pi }{2}} \right]\) là:
Phương trình tiếp tuyến của đồ thị hàm số $y = {\left( {x + 1} \right)^2}\left( {x-2} \right)$ tại điểm có hoành độ $x = 2$ là
Tính đạo hàm của hàm số \(y = \dfrac{{2x + 5}}{{{x^2} + 3x + 3}}.\)
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt[3]{{4{x^2} + 8}} - \sqrt {8{x^2} + 4} }}{x}\,\,\,khi\,x \ne 0\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 0\end{array} \right.\). Giá trị của \(f'\left( 0 \right)\) bằng:
Đạo hàm của hàm số \(y = \sin 2x\) là:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\sqrt x \,\,\,khi\,\,x > 1\\{x^2}\,\,\,\,\,khi\,\,x \le 1\end{array} \right.\). Tính \(f'\left( 1 \right)\) ?
Viết phương trình tiếp tuyến $d$ của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) tại điểm có hoành độ \({x_0}\) thỏa mãn \(f''\left( {{x_0}} \right) = 0?\)
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x + 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 1\\\dfrac{{{x^3} + 2{x^2} - 7x + 4}}{{x - 1}}\,\,khi\,\,x < 1\end{array} \right.\). Giá trị của \(f'\left( 1 \right)\) bằng:
Tiếp tuyến tại điểm \(M\left( {1;3} \right)\) cắt đồ thị hàm số \(y = {x^3} - x + 3\) tại điểm thứ hai khác $M$ là $N$. Tọa độ điểm $N$ là:
Cho hàm số \(f\left( x \right) = \dfrac{{{x^2} + \left| {x + 1} \right|}}{x}\). Tính đạo hàm của hàm số tại \({x_0} = - 1\).
Tìm $a, b$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} + 1}}{{x + 1}}\,\,khi\,\,x \ge 0\\ax + b\,\,khi\,\,x < 0\end{array} \right.\) có đạo hàm tại điểm $x = 0.$
Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 1\). Đạo hàm của hàm số f(x) âm khi và chỉ khi
Tính đạo hàm của hàm số sau: \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 3x + 1\,\,\,\,khi\,\,x > 1\\2x + 2\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \le 1\end{array} \right.\) ta được:
Cho hàm số \(y = \sqrt {2x - {x^2}} \). Mệnh đề nào sau đây là đúng ?
Đạo hàm cấp 4 của hàm số \(y = \sin 5x.\sin 3x\) là :
Cho chuyển động thẳng xác định bởi phương trình $s={{t}^{3}}-3{{t}^{2}}-9t$, trong đó $t>0$, $t$ tính bằng giây và $s\left( t \right)$ tính bằng mét. Gia tốc của chuyển động tại thời điểm vận tốc bị triệt tiêu là:
Tiếp tuyến kẻ từ điểm $\left( {2;3} \right)$ tới đồ thị hàm số $y = \dfrac{{3x + 4}}{{x - 1}}$ là
Số tiếp tuyến của đồ thị hàm số \(y = \dfrac{1}{3}{x^3} - 2{x^2} + 3x + 1\) song song với đường thẳng \(y = 8x + 2\) là:
Cho hàm số \(y = {x^3} + 3{x^2} + 1\) có đồ thị \(\left( C \right)\). Gọi d là tiếp tuyến của đồ thị hàm số tại điểm \(A\left( {1;5} \right)\) và $B$ là giao điểm thứ hai của $d$ với \(\left( C \right)\). Tính diện tích tam giác $OAB$?