Kết quả:
0/12
Thời gian làm bài: 00:00:00
Công việc \(A\) có \(k\) công đoạn \({A_1},{A_2},...,{A_k}\) với số cách thực hiện lần lượt là \({n_1},{n_2},...,{n_k}\). Khi đó số cách thực hiện công việc \(A\) là:
Từ thành phố A đến thành phố B có $3$ con đường, từ thành phố A đến thành phố C có $2$ con đường, từ thành phố B đến thành phố D có $2$ con đường, từ thành phố C đến thành phố D có $3$ con đường, không có con đường nào nối từ thành phố C đến thành phố B. Hỏi có bao nhiêu con đường đi từ thành phố A đến thành phố D.
Số chỉnh hợp chập \(5\) của \(9\) phần tử là:
Một lớp có $8$ học sinh được bầu chọn vào 3 chức vụ khác nhau: lớp trưởng, lớp phó và bí thư (không được kiêm nhiệm). Số cách lựa chọn khác nhau sẽ là:
Số chỉnh hợp chập \(k\) của \(n\) phần tử là:
Bạn muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có $8$ màu khác nhau, các cây bút chì cũng có $8$ màu khác nhau. Như vậy bạn có bao nhiêu cách chọn
Số tổ hợp chập \(k\) của \(n\) phần tử là:
Với các chữ số $0,1,2,3,4,5$ có thể lập được bao nhiêu số gồm $8$ chữ số, trong đó chữ số $1$ có mặt $3$ lần, mỗi chữ số khác có mặt đúng $1$ lần.
Cho các số $1,2,3,4,5,6,7$. Số các số tự nhiên gồm $5$ chữ số lấy từ $7$ chữ số trên sao cho chữ số đầu tiên bằng $3$ là:
Một đội văn nghệ đã chuẩn bị \(3\) bài múa, \(4\) bài hát và \(2\) vở kịch. Thầy giáo yêu cầu đội chọn biểu diễn một vở kịch hoặc một bài hát. Số cách chọn bài biểu diễn của đội là:
Có bao nhiêu số có \(5\) chữ số đôi một khác nhau tạo thành từ các chữ số \(1,2,3,4,5\)?
Từ $5$ bông hoa hồng vàng, $3$ bông hoa hồng trắng và $4$ bông hoa hồng đỏ (các bông hoa xem như đôi một khác nhau), người ta muốn chọn một bó hồng gồm $7$ bông, hỏi có bao nhiêu cách chọn bó hoa trong đó có ít nhất $3$ bông hoa hồng vàng và ít nhất $3$ bông hoa hồng đỏ?