Kết quả:
0/25
Thời gian làm bài: 00:00:00
Tính $\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 6x + 5}}{{{x^3} + 2{x^2} - 1}}$ bằng?
Cho \(\left( {{u_n}} \right)\) là một cấp số nhân công bội \(q = \dfrac{1}{3}\) và số hạn đầu \({u_1} = 2\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\). Giá trị \(\lim {S_n}\) là:
Hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^4} + x}}{{{x^2} + x}}\,\,\,khi\,\,x \ne 0,\,x \ne - 1\\3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = - 1\\1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\)
Giới hạn $\lim \dfrac{{{{\left( {2 - 5n} \right)}^3}{{\left( {n + 1} \right)}^2}}}{{2 - 25{n^5}}}$bằng?
Kết quả của giới hạn \(\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{x - 15}}{{x - 2}}\) là:
Giá trị của \(D = \lim \dfrac{{{n^3} - 3{n^2} + 2}}{{{n^4} + 4{n^3} + 1}}\) bằng:
Dãy số nào dưới đây không có giới hạn \(0\)?
Tính $\mathop {\lim }\limits_{x \to 2} \sqrt {\dfrac{{{x^4} + 3x - 1}}{{2{x^2} - 1}}} $ bằng?
Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{2\sqrt {1 + x} - \sqrt[3]{{8 - x}}}}{x}\) là:
Cho phương trình \(2{x^4} - 5{x^2} + x + 1 = 0\,\,\,\left( 1 \right)\). Trong các mệnh đề sau, mệnh đề nào đúng?
Biết rằng \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1.\) Tìm giá trị thực của tham số \(m\) để hàm số $f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\dfrac{{\sin \pi x}}{{x - 1}}}&{{\rm{khi }}x \ne 1}\\m&{{\rm{khi }}x = 1}\end{array}} \right.$ liên tục tại \(x = 1.\)
Biết \(\lim {u_n} = + \infty \). Chọn mệnh đề đúng trong các mệnh đề sau.
Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( {{{\left| x \right|}^3} + 2{x^2} + 3\left| x \right|} \right)\) là:
Giá trị của \(D = \lim \left( {\sqrt {{n^2} + 2n} - \sqrt[3]{{{n^3} + 2{n^2}}}} \right)\) bằng:
Số \(L\) là giới hạn phải của hàm số \(y = f\left( x \right)\) kí hiệu là:
Tính $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 4}}$ bằng?
Tính giới hạn của dãy số \({u_n} = \dfrac{1}{{2\sqrt 1 + \sqrt 2 }} + \dfrac{1}{{3\sqrt 2 + 2\sqrt 3 }} + ... + \dfrac{1}{{(n + 1)\sqrt n + n\sqrt {n + 1} }}\)
Cho dãy số $({u_n})$ với ${u_n} = \dfrac{{\left( {2n + 1} \right)\left( {1 - 3n} \right)}}{{\sqrt[3]{{{n^3} + 5n - 1}}}}$. Khi đó $\lim {u_n}$ bằng?
Tính $\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 1} + x - 1} \right)$ bằng?
Giá trị của \(B = {\rm{lim}}\dfrac{{\sqrt[{\rm{n}}]{{n!}}}}{{\sqrt {{n^3} + 2n} }}\) bằng:
Tính $\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt[3]{{{x^3} + 1}} + x - 1} \right)$ bằng?
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - 1}}{{x - 1}} & {\rm{khi}}\,\,x < 3,\,\,x \ne 1\\4 & {\rm{khi}}\,\,x = 1\\\sqrt {x + 1} & {\rm{khi}}\,\,x \ge 3\end{array} \right.\). Hàm số \(f\left( x \right)\) liên tục tại:
Tìm tất cả các giá trị của \(a\) để $\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {2{x^2} + 1} + ax} \right)$ là \( + \infty .\)
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { - 10;10} \right)\) để phương trình ${x^3} - 3{x^2} + \left( {2m - 2} \right)x + m - 3 = 0$ có ba nghiệm phân biệt ${x_1},{\rm{ }}{x_2},{\rm{ }}{x_3}$ thỏa mãn ${x_1} < - 1 < {x_2} < {x_3}$?
Cho \(a, b\) là các số thực khác \(0\). Tìm hệ thức liên hệ giữa \(a\) và \(b\) để hàm số sau liên tục tại \(x = 0\): \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1} \sqrt[3]{{bx + 1}} - 1}}{x}\,\,\,\,\,khi\,x \ne 0\\a + b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\)