Kết quả:
0/50
Thời gian làm bài: 00:00:00
Tìm số hạng không chứa $x$ trong khai triển ${\left( {x{y^2} - \dfrac{1}{{xy}}} \right)^8}.$
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang có cạnh đáy $AB$ và $CD$ . Gọi I, J lần lượt là trung điểm của các cạnh $AD$ và $BC$ và $G$ là trọng tâm tam giác $SAB$. Tìm điều kiện của $AB$ và $CD$ để thiết diện của $\left( {IJG} \right)$ và hình chóp là một hình bình hành.
Cho năm điểm \(A,B,C,D,E\) trong đó không có bốn điểm nào ở trên cùng một mặt phẳng. Hỏi có bao nhiêu mặt phẳng tạo bởi ba trong số năm điểm đã cho?
Cho điểm $N\left( { - 2;3} \right)$. Khẳng định nào sau đây đúng
Cho hình chóp $S.ABCD.$ Gọi $M, N $ lần lượt là trọng tâm của tam giác $SAB$ và $ABC.$ Khi đó $MN$ song song với
Trong mặt phẳng tọa độ \(Oxy\) cho phép vị tự \(V\) tỉ số \(k = 2\) biến điểm \(A\left( {1; - 2} \right)\) thành điểm \(A'\left( { - 5;1} \right).\) Hỏi phép vị tự \(V\) biến điểm \(B\left( {0;1} \right)\) thành điểm có tọa độ nào sau đây?
Phương trình \(\sin x + \sqrt 3 \cos x = \sqrt 2 \) có hai họ nghiệm có dạng \(x = \alpha + k2\pi ,\,x = \beta + k2\pi ,\)
\(\left( { - \dfrac{\pi }{2} < \alpha <\beta < \dfrac{\pi }{2}} \right)\) . Khi đó \(\alpha .\beta \) là:
Gọi $m$ là ảnh của đường thẳng $d$ qua phép quay tâm $I$ góc quay \(\alpha \) (biết rằng $I$ không nằm trên $d$), đường thẳng $d$ song song với $m$ khi:
Viết sáu số xen giữa $3$ và $24$ để được một cấp số cộng có $8$ số hạng. Sáu số hạng cần viết thêm là :
Cho hình vuông tâm $O$. Hỏi có bao nhiêu phép quay tâm $O$, góc quay \(\alpha \,\,\left( {0 < \alpha \le 360^0} \right)\) biến hình vuông đã cho thành chính nó.
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\) có công bội \(q > 0\) . Biết \({u_2} = 4;{u_4} = 9\) .
Trong các điều kiện sau, điều kiện nào kết luận \(mp\left( \alpha \right)//mp\left( \beta \right)\)?
Cho hình bình hành ABCD. Phép tịnh tiến theo \({T_{\overrightarrow {AB} - \overrightarrow {AC} }}\) biến đoạn thẳng DC thành đoạn thẳng nào sau đây?
Cho tứ diện \(ABCD\). Chọn kết luận đúng:
Xếp ngẫu nhiên $3$ nam và $5$ nữ ngồi vào $8$ ghế xếp thành hàng ngang. Xác suất để $3$ nam ngồi cạnh nhau.
Chọn mệnh đề đúng:
Cho cấp số nhân $\left( {{u_n}} \right)$, biết: ${u_1} = - 2,{u_2} = 8$ . Lựa chọn đáp án đúng.
Cho hình chóp $S.ABCD$ , đáy là hình thang, đáy lớn $AB$ , Gọi $O$ là giao của $AC$ với $BD$ . $M$ là trung điểm $SC$ . Giao điểm của đường thẳng $AM$ và $mp\left( {SBD} \right)$ là:
Số các hoán vị khác nhau của \(n\) phần tử là:
Có bao nhiêu cách xếp \(5\) học sinh thành một hàng dọc?
Phép đối xứng tâm \(I\left( {1;1} \right)\) biến đường thẳng \(d:\,\,x + y + 2 = 0\) thành đường thẳng $d'$ có phương trình là:
Giả sử $M$ là giao của đường thẳng $a$ và mặt phẳng $\left( P \right)$. Khẳng định nào sau đây sai?
Cho dãy số \(\left( {{u_n}} \right),\) biết \({u_n} = \dfrac{{n + 1}}{{2n + 1}}\). Số \(\dfrac{8}{{15}}\) là số hạng thứ mấy của dãy số?
Cho cấp số cộng \(\left( {{x_n}} \right)\) có \({S_n} = 3{n^2} - 2n\). Tìm số hạng đầu ${u_1}$ và công sai $d$ của cấp số cộng đó.
Tích các giá trị $x$ nguyên thỏa mãn bất phương trình \(\dfrac{1}{2}A_{2x}^2 - A_x^2 \le \dfrac{6}{x}C_x^3 + 10\) là:
Một hình chóp có đáy là ngũ giác có số mặt và số cạnh là :
Điểm nào là ảnh của \(M\left( {3; - 1} \right)\) qua phép đối xứng tâm \(I\left( {1;2} \right)\)
Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7 là:
Phương trình \(\tan \dfrac{x}{2} = \tan x\) có nghiệm:
Tìm mệnh đề đúng trong các mệnh đề sau:
Dùng quy nạp chứng minh mệnh đề chứa biến \(P\left( n \right)\) đúng với mọi số tự nhiên $n \ge p$ (\(p\) là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề \(P\left( n \right)\) đúng với \(n = k\). Khẳng định nào sau đây là đúng?
Một lớp có $8$ học sinh được bầu chọn vào 3 chức vụ khác nhau: lớp trưởng, lớp phó và bí thư (không được kiêm nhiệm). Số cách lựa chọn khác nhau sẽ là:
Giá trị nhỏ nhất của hàm số \(y = 2{\cos ^2}x + \sin 2x\) là
Một nhóm $9$ người gồm $3$ đàn ông, $4$ phụ nữ và $2$ đứa trẻ đi xem phim. Hỏi có bao nhiêu cách xếp họ ngồi trên một hàng ghế sao cho mỗi đứa trẻ ngồi giữa hai người phụ nữ và không có hai người đàn ông nào ngồi cạnh nhau.
Số nguyên dương \(n\) thỏa mãn \(C_n^0 + 2C_n^1 + {2^2}C_n^2 + {2^3}C_n^3 + ... + {2^{n - 2}}C_n^{n - 2} + {2^{n - 1}}C_n^{n - 1} + {2^n}C_n^n = 243\) là:
Một hộp đựng 20 viên bi khác nhau được đánh số từ 1 đến 20. Lấy ba viên bi từ hộp trên rồi cộng số ghi trên đó lại. Hỏi có bao nhiêu cách để lấy kết quả thu được là một số chia hết cho 3?
Một chiếc tàu khoan thăm dò dầu khí trên thềm lục địa có xác suất khoan trúng túi dầu là $0,4$. Xác suất để trong $5$ lần khoan độc lập, chiếc tàu đó khoan trúng túi dầu ít nhất một lần.
Giá trị của tổng $S = 1-2 + 3-4 + ... - 2n + \left( {2n + 1} \right)$ là:
Tìm tất cả các giá trị của tham số \(m\) để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: \({x^3} - 7{x^2} + 2\left( {{m^2} + 6m} \right)x - 8 = 0.\)
Trong mặt phẳng Oxy cho hai điểm A(1;6), B(-1;-4). Gọi C, D lần lượt là ảnh của A và B qua phép dời hình \(\left\{ \begin{array}{l}x' = {x} + 1\\y' = {y} + 5\end{array} \right.\). Tìm khẳng định đúng trong các khẳng định sau:
Trong mặt phẳng tọa độ \(Oxy\) cho đường thẳng \(d:x + y - 2 = 0.\) Ảnh của đường thẳng \(d\) qua phép đối xứng trục \(Ox\) có phương trình là:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(I,{\rm{ }}J\) lần lượt là trung điểm \(SA,{\rm{ }}SB.\) Khẳng định nào sau đây sai?
Cho tứ diện \(ABCD.\) Gọi \(G\) là trọng tâm tam giác \(BCD,\) \(M\) là trung điểm \(CD,\) \(I\) là điểm ở trên đoạn thẳng \(AG,\) \(BI\) cắt mặt phẳng \(\left( {ACD} \right)\) tại \(J.\) Khẳng định nào sau đây sai?
Cho tứ diện \(ABCD\). Gọi \(E,{\rm{ }}F,{\rm{ }}G\) là các điểm lần lượt thuộc các cạnh \(AB,{\rm{ }}AC,{\rm{ }}BD\) sao cho \(EF\) cắt \(BC\) tại \(I\), \(EG\) cắt \(AD\) tại \(H\). Ba đường thẳng nào sau đây đồng quy?
Cho tứ diện đều $ABCD$ cạnh $a$ . Gọi $M$ và $P$ lần lượt là hai điểm di động trên các cạnh $AD$ và $BC$ sao cho $MA = PC = x\left( {0 < x < \dfrac{a}{2}} \right)$ . Mặt phẳng \(\left( \alpha \right)\) đi qua $MP$ song song với $CD$ cắt tứ diện theo một thiết diện là hình gì?
Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Mặt phẳng \(\left( \alpha \right)\) cắt $SA, SB, SC, SD$ theo thứ tự lần lượt tại $A’, B’, C’, D’$ (không đồng thời trùng với các đầu mút). \(A'B'C'D'\) là hình bình hành khi và chỉ khi:
Cho tứ diện $ABCD,$ $M$ là trung điểm của cạnh $CD,$ $G$ là trọng tâm tứ diện. Khi đó 2 đường thẳng $AD$ và $GM $ là hai đường thẳng:
Giải phương trình \(\cos 3x\tan 5x = \sin 7x\).
Một lớp học có $n$ học sinh $\left( {n > 3} \right)$. Thầy chủ nhiệm cần chọn ra một nhóm và cần cử ra $1$ học sinh trong nhóm đó làm nhóm trưởng. Số học sinh trong mỗi nhóm phải lớn hơn $1$ và nhỏ hơn $n$. Gọi $T$ là số cách chọn. Lúc này:
Tìm tất cả các giá trị của tham số $m$ để phương trình sau có ba nghiệm phân biệt lập thành một cấp số cộng : \({x^3} - 3m{x^2} + 2m\left( {m - 4} \right)x + 9{m^2} - m = 0\) ?