Kết quả:
0/50
Thời gian làm bài: 00:00:00
Trong không gian cho tam giác đều $SAB$ và hình vuông $ABCD$ cạnh $a$ nằm trên hai mặt phẳng vuông góc. Gọi $H,$ $K$ lần lượt là trung điểm của $AB$, $CD$. Gọi $\varphi $ là góc giữa hai mặt phẳng $\left( {SAB} \right)$ và $\left( {SCD} \right)$. Mệnh đề nào sau đây đúng?
Trong các mệnh đề sau mệnh đề nào đúng?
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $C$, mặt bên $SAC$ là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi $I$ là trung điểm của $SC$. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
$\left( I \right):AI \bot SC$
$\left( {II} \right):\,\,\left( {SBC} \right) \bot \left( {SAC} \right)$
$\left( {III} \right):\,\,AI \bot BC$
$\left( {IV} \right):\,\,\left( {ABI} \right) \bot \left( {SBC} \right)$
Tính đạo hàm của hàm số sau: \(y = {x^4} - 3{x^2} + 2x - 1\)
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a.$ Cạnh bên $SA$ vuông góc với $mp\,\,\left( {ABCD} \right),\,\,SA = a\sqrt 2 .$ Gọi $\left( \alpha \right)$ là mặt phẳng qua $A$ và vuông góc với $SB.$ Mặt phẳng $\left( \alpha \right)$ cắt hình chóp theo một thiết diện có diện tích $S.$ Tính $S$ theo $a.$
Cho cấp số nhân $\left( {{u_n}} \right)$, biết: ${u_1} = 3,{u_5} = 48$ . Lựa chọn đáp án đúng.
Cho tam giác \(ABC\) vuông cân tại \(A\) và \(BC = a.\) Trên đường thẳng qua \(A\) vuông góc với \(\left( {ABC} \right)\) lấy điểm \(S\) sao cho $SA = \dfrac{{a\sqrt 6 }}{2}$. Tính số đo góc giữa đường thẳng \(SA\) và \(\left( {ABC} \right)\)
Cho phương trình \(2{x^4} - 5{x^2} + x + 1 = 0\,\,\,\left( 1 \right)\). Trong các mệnh đề sau, mệnh đề nào đúng?
Xét \(y = f\left( x \right) = \cos \left( {2x - \dfrac{\pi }{3}} \right)\). Phương trình \({f^{\left( 4 \right)}}\left( x \right) = - 8\) có nghiệm \(x \in \left[ {0;\dfrac{\pi }{2}} \right]\) là:
Cho \(\left| {\overrightarrow a } \right| = 3,\left| {\overrightarrow b } \right| = 5\), góc giữa \(\overrightarrow a \) và \(\overrightarrow b \) bằng $120^\circ $. Chọn khẳng định sai trong các khẳng định sau?
Cho tứ diện đều $ABCD$ cạnh $a = 12,$ gọi $\left( P \right)$ là mặt phẳng qua $B$ và vuông góc với $AD.$ Thiết diện của $\left( P \right)$ và hình chóp có diện tích bằng
Đạo hàm của hàm số \(y = \sin 2x\) là:
Cho cấp số nhân $\left( {{u_n}} \right)$, biết: ${u_1} = - 2,{u_2} = 8$ . Lựa chọn đáp án đúng.
Cho hình chóp \(S.ABC\) có \(SA = SB\) và \(CA = CB\). Tính số đo của góc giữa hai đường thẳng chéo nhau \(SC\) và \(AB.\)
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Khoảng cách giữa hai mặt phẳng \((ACD')\) và \((BA'C')\) bằng
Giới hạn $\lim \left( {\sqrt {{n^2} - n} - n} \right)$ bằng?
Tính $\mathop {\lim }\limits_{x \to 2} \dfrac{{x - \sqrt {x + 2} }}{{\sqrt {4x + 1} - 3}}$ bằng?
Cho hàm số \(y = \sin 2x\). Hãy chọn câu đúng?
Tính $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 4}}$ bằng?
Trong các mệnh đề sau, mệnh đề nào đúng?
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {{x_0};{y_0}} \right)\) thuộc \(\left( C \right)\). Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) là
Cho hình hộp $ABCD.A'B'C'D'$ có đáy là hình thoi $\widehat {BAD} = {60^0}$ và $A'A = A'B = A'D$. Gọi $O = AC \cap BD$. Hình chiếu của $A'$ trên $\left( {ABCD} \right)$ là :
Trong không gian cho ba đường thẳng phân biệt \(a,b,c\). Khẳng định nào sau đây đúng?
Dãy số nào sau đây có giới hạn \(0\)?
Cho ${u_n} = \dfrac{{{n^2} - 3n}}{{1 - 4{n^2}}}$. Khi đó $\lim {u_n}$bằng?
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB = a,{\rm{ }}AC = a\sqrt 3 $. Tam giác $SBC$ đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách $d$ từ $B$ đến mặt phẳng $\left( {SAC} \right)$.
Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\) và \(AB \bot BC\). Dựng \(AH\) là đường cao của \(\Delta SAB\). Khẳng định nào sau đây sai?
Cho hàm số \(f\left( x \right) =\) \( \left\{ \begin{array}{l}\dfrac{{\tan x}}{x}\,\,\,khi\,\,x \ne 0,x \ne \dfrac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right)\\0\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\). Hàm số \(y = f\left( x \right)\) liên tục trên các khoảng nào sau đây?
Cho hàm số \(f\left( x \right) = \sqrt[3]{x}\). Giá trị của \(f'\left( 8 \right)\) bằng:
Tính $\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 1} + x - 1} \right)$ bằng?
Tính $\mathop {\lim }\limits_{x \to - \infty } x\sqrt {\dfrac{{3x + 2}}{{2{x^3} + {x^2} - 1}}} $ bằng?
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {{{\left( {x - 3} \right)}^2}} }}{{x - 3}}\,\,khi\,\,x \ne 3\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 3\end{array} \right.\). Tìm tất cả các giá trị của tham số thực $m$ để hàm số liên tục tại $x = 3.$
Cho hàm số \(f\left( x \right)\) xác định trên $[a; b].$ Trong các khẳng định sau, khẳng định nào đúng?
Hàm số \(y = {\tan ^2}\dfrac{x}{2}\) có đạo hàm là:
Cho hình lập phương $ABCD.EFGH$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AF} \) và \(\overrightarrow {EG} \)?
Đạo hàm của hàm số \(y = {\tan ^2}x - co{t^2}x\) là:
Cho hàm số \(y = {x^4} - 2{m^2}{x^2} + 2m + 1\) và có đồ thị \({C_m}\). Tập tất cả các giá trị của tham số m để tiếp tuyến của đồ thị \(\left( {{C_m}} \right)\) tại giao điểm của \(\left( {{C_m}} \right)\) với đường thẳng \(d:\,\,x = 1\) song song với đường thẳng \(y = - 12x + 4\) là :
Số tiếp tuyến đi qua điểm \(A\left( {1; - 6} \right)\) của đồ thị hàm số \(y = {x^3} - 3x + 1\) là:
Cho tứ diện $ABCD$ có trọng tâm $G$. Chọn khẳng định đúng?
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a.$ Cạnh bên $SA = x$ và vuông góc với mặt phẳng $\left( {ABCD} \right).$ Xác định $x$ để hai mặt phẳng $\left( {SBC} \right)$ và $\left( {SCD} \right)$ tạo với nhau một góc ${60^0}.$
Cho hình chóp $A.BCD$ có cạnh $AC \bot \left( {BCD} \right)$ và $BCD$ là tam giác đều cạnh bằng $a$. Biết $AC = a\sqrt 2 $ và $M$ là trung điểm của $BD$. Khoảng cách từ $C$ đến đường thẳng $AM$ bằng
Cho hình chóp $SABC$ có $SA \bot \left( {ABC} \right).$ Gọi $H,{\rm{ }}K$ lần lượt là trực tâm các tam giác $SBC$ và$ABC$. Mệnh đề nào sai trong các mệnh đề sau?
Cho hình lăng trụ đứng $ABC.A’B’C’$ có đáy $ABC$ là tam giác vuông, $AB = BC = a,$ \(A'B = a\sqrt 3 \). Gọi $M$ là trung điểm của cạnh $BC.$ Tính khoảng cách giữa hai đường thẳng $AM$ và $B’C.$
Cho hàm số \(f(x) = {x^3} - 3x - 1\). Số nghiệm của phương trình \(f\left( x \right) = 0\) trên \(\mathbb{R}\) là:
Cho hàm số \(y = \dfrac{{x + 2}}{{x - 1}}\) có đồ thị \(\left( C \right)\). Gọi $d$ là khoảng cách từ điểm \(A\left( {1;1} \right)\) đến một tiếp tuyến bất kỳ của đồ thị \(\left( C \right)\). Tìm giá trị lớn nhất của $d$?
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, $SA = a$ và vuông góc với đáy. Mặt phẳng $\left( \alpha \right)$ qua trung điểm $E$ của $SC$ và vuông góc với $AB$. Tính diện tích $S$ của thiết diện tạo bởi $\left( \alpha \right)$ với hình chóp đã cho.
Cho hình chóp $S.ABC$ có đáy $\widehat {BAC} = {90^0},\,\,\,BC = 2a,\,\,\,\widehat {ACB} = {30^0}.$ Mặt phẳng $\left( {SAB} \right)$ vuông góc với mặt phẳng $\left( {ABC} \right).$ Biết rằng tam giác $SAB$ cân tại $S$ và tam giác $SBC$ vuông tại $S.$ Tính diện tích tam giác $SAB.$
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ lên $\left( {ABC} \right)$ trùng với trung điểm $H$ của cạnh $BC$. Biết tam giác $SBC$ là tam giác đều. Tính số đo của góc giữa $SA$ và $\left( {ABC} \right).$
Cho hàm số \(y = {x^3} + 3{x^2} + 1\) có đồ thị \(\left( C \right)\). Gọi d là tiếp tuyến của đồ thị hàm số tại điểm \(A\left( {1;5} \right)\) và $B$ là giao điểm thứ hai của $d$ với \(\left( C \right)\). Tính diện tích tam giác $OAB$?
Tính $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}}{x}$