Kết quả:
0/12
Thời gian làm bài: 00:00:00
Bạn muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có $8$ màu khác nhau, các cây bút chì cũng có $8$ màu khác nhau. Như vậy bạn có bao nhiêu cách chọn
Số tổ hợp chập \(k\) của \(n\) phần tử là:
Một lớp có $8$ học sinh được bầu chọn vào 3 chức vụ khác nhau: lớp trưởng, lớp phó và bí thư (không được kiêm nhiệm). Số cách lựa chọn khác nhau sẽ là:
Số các hoán vị khác nhau của \(n\) phần tử là:
Mỗi cách lấy ra \(k\) trong số \(n\) phần tử được gọi là:
Số tổ hợp chập \(6\) của \(7\) phần tử là:
Công việc \(A\) có \(k\) công đoạn \({A_1},{A_2},...,{A_k}\) với số cách thực hiện lần lượt là \({n_1},{n_2},...,{n_k}\). Khi đó số cách thực hiện công việc \(A\) là:
Trong một trò chơi của chương trình truyền hình thực tế RNM, có hai đội chơi chia như sau:
+ Đội 1 gồm các thành viên: KJK, YSC, HH, SJH, KGR.
+ Đội 2 gồm các thành niên: YJS, JSJ, JSM, LKS.
Kết thúc trò chơi, cả hai đội đều chưa hoàn thành nhiệm vụ, cần chọn ra ngẫu nhiên \(1\) thành viên thuộc \(1\) trong \(2\) đội để nhận hình phạt. Biết rằng khả năng bị chọn trúng của mỗi người là như nhau. Hỏi có tất cả bao nhiêu cách chọn người bị phạt?
Trong mặt phẳng có $2010$ điểm phân biệt sao cho có ba điểm bất kì không thẳng hàng. Hỏi có bao nhiêu véc tơ mà có điểm đầu và điểm cuối phân biệt thuộc $2010$ điểm đã cho.
Cho tập $A = \left\{ {1;2;4;6;7;9} \right\}$. Hỏi có thể lập được từ tập $A$ bao nhiêu số tự nhiên có $4$ chữ số đôi một khác nhau, trong đó không có mặt chữ số $7$.
Một lớp có \(40\) học sinh. Số cách chọn ra \(5\) bạn để làm trực nhật là:
Có bao nhiêu giá trị của $n$ thỏa mãn bất đẳng thức: \(C_{n - 1}^4 - C_{n - 1}^3 - \dfrac{5}{4}A_{n - 2}^2 < 0\,\,\left( {n \in N} \right)\)?