Kết quả:
0/12
Thời gian làm bài: 00:00:00
Hình nào sau đây có nhiều trục đối xứng nhất ?
Trong mặt phẳng tọa độ \(Oxy\) cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 4\). Phép đối xứng trục \(Ox\) biến đường tròn \(\left( C \right)\) thành đường tròn \(\left( {C'} \right)\) có phương trình là:
Cho điểm $N\left( { - 2;3} \right)$. Khẳng định nào sau đây đúng
Cho hai đường thẳng cắt nhau $d$ và $d'$. Có bao nhiêu phép tịnh tiến biến đường thẳng $d$ thành đường thẳng $d'$?
Trong các mệnh đề sau, mệnh đề nào đúng?
Hình gồm hai đường tròn phân biệt có cùng bán kính có bao nhiêu tâm đối xứng?
Chọn khẳng định sai trong các khẳng định sau:
Trong mặt phẳng tọa độ $Oxy$ cho đường tròn \(\left( {C'} \right):{x^2} + {y^2} - 10x - 2y + 23 = 0\) và đường thẳng $d:x-y + 2 = 0$, phương trình đường tròn $\left( {C'} \right)$ là ảnh của đường tròn $\left( C \right)$ qua phép đối xứng trục $d$ là
Trong mặt phẳng tọa độ $Oxy$ , nếu phép tịnh tiến biến điểm \(A\left( {3;2} \right)\) thành điểm \(A'\left( {2;5} \right)\) thì nó biến điểm \(B\left( {2;5} \right)\) thành:
Trong mặt phẳng tọa độ $Oxy$, nếu phép tịnh tiến biến điểm \(A\left( {2; - 1} \right)\) thành điểm \(A'\left( {3;0} \right)\) thì nó biến đường thẳng nào sau đây thành chính nó?
Trong mặt phẳng tọa độ \(Oxy\) cho đường thẳng \(d:x + y - 2 = 0.\) Ảnh của đường thẳng \(d\) qua phép đối xứng trục \(Ox\) có phương trình là:
Cho hai đường thẳng cắt nhau $d$ và $d'$. Có bao nhiêu phép đối xứng tâm biến mỗi đường thẳng đó thành chính nó