0/25
Bắt đầu Thoát
00:00:00

Đề kiểm tra 1 tiết chương 4: Giới hạn - Đề số 2

Kết quả:

0/25

Thời gian làm bài: 00:00:00

Câu 1 Trắc nghiệm

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{3 - \sqrt {9 - x} }}{x}\,\,\,khi\,\,0 < x < 9\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\\\dfrac{3}{x}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 9\end{array} \right.\). Tìm \(m\) để \(f\left( x \right)\) liên tục trên \(\left[ {0; + \infty } \right)\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 2 Trắc nghiệm

Hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - x\cos x\,\,\,khi\,\,x < 0\\\dfrac{{{x^2}}}{{1 + x}}\,\,\,\,\,\,\,\,\,\,khi\,\,0 \le x < 1\\{x^3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 1\end{array} \right.\) 

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 3 Trắc nghiệm

Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt[3]{{3{x^3} - 1}} + \sqrt {{x^2} + 2} } \right)\) là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 4 Trắc nghiệm

Cho ${u_n} = \dfrac{{1 - 4n}}{{5n}}$. Khi đó $\lim {u_n}$bằng?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 5 Trắc nghiệm

Dãy số nào dưới đây có giới hạn bằng $ + \infty $?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 6 Trắc nghiệm

Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{2\sqrt {1 + x}  - \sqrt[3]{{8 - x}}}}{x}\) là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 8 Trắc nghiệm

Giá trị \(\lim \dfrac{{{{\left( { - 1} \right)}^n}}}{{n\left( {n + 1} \right)}}\) bằng

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 9 Trắc nghiệm

Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) có \(\lim {u_n} = \sqrt 3 \) và \(\lim {v_n} =  - 2\sqrt 3 \). Giới hạn \(I = \lim \left( {{u_n} + {v_n}} \right)\) thỏa mãn điều kiện nào dưới đây?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 11 Trắc nghiệm

Cho các dãy số \({u_n} = \dfrac{1}{n},n \ge 1\) và \({v_n} = {n^2},n \ge 1\). Khi đó:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 12 Trắc nghiệm

Kết quả của giới hạn $\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \dfrac{{\left| {3x + 6} \right|}}{{x + 2}}$ là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 13 Trắc nghiệm

Giới hạn $\lim \dfrac{{{2^{n + 1}} - {{3.5}^n} + 5}}{{{{3.2}^n} + {{9.5}^n}}}$bằng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 14 Trắc nghiệm

Dãy số nào sau đây có giới hạn \(0\)?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 15 Trắc nghiệm

Chọn đáp án đúng: Với \(c,k\) là các hằng số và \(k\) nguyên dương thì:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 16 Trắc nghiệm

Giá trị của \(C = \lim \dfrac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1}  + n}}\) bằng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 17 Trắc nghiệm

Cho dãy số $({u_n})$ xác định bởi  $\left\{ \begin{align} & u_{1}=2 \\  & {u_{n+1}}=\dfrac{{{u}_{n}}+1}{2},(n\ge 1)  \end{align} \right.$ Khi đó mệnh đề nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 18 Trắc nghiệm

Tính $\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + x + 3}  - x} \right)$ bằng?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 19 Trắc nghiệm

Tính$\mathop {\lim }\limits_{x \to  - \infty } (x - 1)\sqrt {\dfrac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} $ bằng?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 20 Trắc nghiệm

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - 1}}{{x - 1}} & {\rm{khi}}\,\,x < 3,\,\,x \ne 1\\4 & {\rm{khi}}\,\,x = 1\\\sqrt {x + 1}  & {\rm{khi}}\,\,x \ge 3\end{array} \right.\). Hàm số \(f\left( x \right)\) liên tục tại:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 21 Trắc nghiệm

Tìm giá trị thực của tham số \(m\) để hàm số $f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\dfrac{{{x^3} - {x^2} + 2x - 2}}{{x - 1}}}&{{\rm{khi }}x \ne 1}\\{3x + m}&{{\rm{khi }}x = 1}\end{array}} \right.$ liên tục tại \(x = 1.\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 22 Trắc nghiệm

Cho $a$ và $b$ là các số thực khác $0.$ Tìm hệ thức liên hệ giữa $a$ và $b$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1}  - 1}}{x}\,\,\,khi\,\,x \ne 0\\4{x^2} + 5b\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) liên tục tại $x = 0.$

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 23 Trắc nghiệm

Cho dãy số $({u_n})$xác định bởi
\(\left\{ \begin{array}{l}{u_1} = \dfrac{1}{2}\\{u_{n + 1}} = \dfrac{{\sqrt {u_n^2 + 4{u_n}} + {u_n}}}{2},\left( {n \ge 1} \right)\end{array} \right.\)
Đặt ${v_n} = \sum\limits_{i = 1}^n {\dfrac{1}{{u_{_i}^2}}}, $ khẳng định nào sau đây đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 24 Trắc nghiệm

Tính $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}}{x}$

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 25 Trắc nghiệm

Cho \(a, b\) là các số thực khác \(0\). Tìm hệ thức liên hệ giữa \(a\) và \(b\) để hàm số sau liên tục tại \(x = 0\): \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1} \sqrt[3]{{bx + 1}} - 1}}{x}\,\,\,\,\,khi\,x \ne 0\\a + b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c