Kết quả:
0/25
Thời gian làm bài: 00:00:00
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{3 - \sqrt {9 - x} }}{x}\,\,\,khi\,\,0 < x < 9\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\\\dfrac{3}{x}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 9\end{array} \right.\). Tìm \(m\) để \(f\left( x \right)\) liên tục trên \(\left[ {0; + \infty } \right)\).
Hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - x\cos x\,\,\,khi\,\,x < 0\\\dfrac{{{x^2}}}{{1 + x}}\,\,\,\,\,\,\,\,\,\,khi\,\,0 \le x < 1\\{x^3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 1\end{array} \right.\)
Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt[3]{{3{x^3} - 1}} + \sqrt {{x^2} + 2} } \right)\) là:
Cho ${u_n} = \dfrac{{1 - 4n}}{{5n}}$. Khi đó $\lim {u_n}$bằng?
Dãy số nào dưới đây có giới hạn bằng $ + \infty $?
Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{2\sqrt {1 + x} - \sqrt[3]{{8 - x}}}}{x}\) là:
Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\). Khi đó ta có thể hiểu rằng:
Giá trị \(\lim \dfrac{{{{\left( { - 1} \right)}^n}}}{{n\left( {n + 1} \right)}}\) bằng
Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) có \(\lim {u_n} = \sqrt 3 \) và \(\lim {v_n} = - 2\sqrt 3 \). Giới hạn \(I = \lim \left( {{u_n} + {v_n}} \right)\) thỏa mãn điều kiện nào dưới đây?
Chọn đáp án đúng:
Cho các dãy số \({u_n} = \dfrac{1}{n},n \ge 1\) và \({v_n} = {n^2},n \ge 1\). Khi đó:
Kết quả của giới hạn $\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \dfrac{{\left| {3x + 6} \right|}}{{x + 2}}$ là:
Giới hạn $\lim \dfrac{{{2^{n + 1}} - {{3.5}^n} + 5}}{{{{3.2}^n} + {{9.5}^n}}}$bằng?
Dãy số nào sau đây có giới hạn \(0\)?
Chọn đáp án đúng: Với \(c,k\) là các hằng số và \(k\) nguyên dương thì:
Giá trị của \(C = \lim \dfrac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1} + n}}\) bằng:
Cho dãy số $({u_n})$ xác định bởi $\left\{ \begin{align} & u_{1}=2 \\ & {u_{n+1}}=\dfrac{{{u}_{n}}+1}{2},(n\ge 1) \end{align} \right.$ Khi đó mệnh đề nào sau đây là đúng?
Tính $\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 3} - x} \right)$ bằng?
Tính$\mathop {\lim }\limits_{x \to - \infty } (x - 1)\sqrt {\dfrac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} $ bằng?
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - 1}}{{x - 1}} & {\rm{khi}}\,\,x < 3,\,\,x \ne 1\\4 & {\rm{khi}}\,\,x = 1\\\sqrt {x + 1} & {\rm{khi}}\,\,x \ge 3\end{array} \right.\). Hàm số \(f\left( x \right)\) liên tục tại:
Tìm giá trị thực của tham số \(m\) để hàm số $f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\dfrac{{{x^3} - {x^2} + 2x - 2}}{{x - 1}}}&{{\rm{khi }}x \ne 1}\\{3x + m}&{{\rm{khi }}x = 1}\end{array}} \right.$ liên tục tại \(x = 1.\)
Cho $a$ và $b$ là các số thực khác $0.$ Tìm hệ thức liên hệ giữa $a$ và $b$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1} - 1}}{x}\,\,\,khi\,\,x \ne 0\\4{x^2} + 5b\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) liên tục tại $x = 0.$
Cho dãy số $({u_n})$xác định bởi
\(\left\{ \begin{array}{l}{u_1} = \dfrac{1}{2}\\{u_{n + 1}} = \dfrac{{\sqrt {u_n^2 + 4{u_n}} + {u_n}}}{2},\left( {n \ge 1} \right)\end{array} \right.\)
Đặt ${v_n} = \sum\limits_{i = 1}^n {\dfrac{1}{{u_{_i}^2}}}, $ khẳng định nào sau đây đúng?
Tính $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}}{x}$
Cho \(a, b\) là các số thực khác \(0\). Tìm hệ thức liên hệ giữa \(a\) và \(b\) để hàm số sau liên tục tại \(x = 0\): \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1} \sqrt[3]{{bx + 1}} - 1}}{x}\,\,\,\,\,khi\,x \ne 0\\a + b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\)