Tính$\mathop {\lim }\limits_{x \to - \infty } (x - 1)\sqrt {\dfrac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} $ bằng?
Trả lời bởi giáo viên
$\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } (x - 1)\sqrt {\dfrac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} \\= \mathop {\lim }\limits_{x \to - \infty } \left[ { - \sqrt {\dfrac{{{x^2}{{(x - 1)}^2}}}{{2{x^4} + {x^2} + 1}}} } \right] \\= \mathop {\lim }\limits_{x \to - \infty } \left[ { - \sqrt {\dfrac{{{x^2}({x^2} - 2x + 1)}}{{2{x^4} + {x^2} + 1}}} } \right]\\ = \mathop {\lim }\limits_{x \to - \infty } \left[ { - \sqrt {\dfrac{{{x^4} - 2{x^3} + {x^2}}}{{2{x^4} + {x^2} + 1}}} } \right]\\ = \mathop {\lim }\limits_{x \to - \infty } \left[ { - \sqrt {\dfrac{{1 - \dfrac{2}{x} + \dfrac{1}{{{x^2}}}}}{{2 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}}}}} } \right] = - \dfrac{{\sqrt 2 }}{2}\end{array}$
Hướng dẫn giải:
- Đưa $x - 1$ vào trong căn: $x - 1 = - \sqrt {{{(x - 1)}^2}} \,\,\,\,khi\,\,x \to - \infty $
- Chia cả tử và mẫu cho lũy thừa của $x$ bậc cao nhất.
- Thay giới hạn $\mathop {\lim }\limits_{x \to \infty } \dfrac{C}{{{x^n}}} = 0,\,\,\,n \in {\mathbb{N}^*}$.
Giải thích thêm:
Cách khác: Đưa x ra ngoài căn bậc hai
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } \left( {x - 1} \right)\sqrt {\dfrac{{{x^2}}}{{2{{\rm{x}}^4} + {x^2} + 1}}} \\ = \mathop {\lim }\limits_{x \to -\infty } \left( {x - 1} \right)\sqrt {\dfrac{1}{{{x^2}\left( {2 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}}} \right)}}} \\ = \mathop {\lim }\limits_{x \to - \infty } \left( {x - 1} \right)\dfrac{1}{{\left| x \right|}}\sqrt {\dfrac{1}{{2 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}}}}} \\ = \mathop {\lim }\limits_{x \to - \infty } \left( {x - 1} \right).\dfrac{1}{{ - x}}\sqrt {\dfrac{1}{{2 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}}}}} \left( {D{\rm{o }}x < 0} \right)\\ = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{x - 1}}{{ - x}}\sqrt {\dfrac{1}{{2 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}}}}} \\ = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{1 - \dfrac{1}{x}}}{{ - 1}}.\sqrt {\dfrac{1}{{2 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}}}}} \\ = - 1.\dfrac{1}{{\sqrt 2 }} = - \dfrac{{\sqrt 2 }}{2}\end{array}\)
Vì \(\mathop {\lim }\limits_{x \to - \infty } \sqrt {\dfrac{1}{{2 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}}}}} = \dfrac{1}{{\sqrt 2 }};\)\(\mathop {\lim }\limits_{x \to -\infty } \dfrac{{ - 1 + \dfrac{1}{x}}}{1} = - 1\)