Kết quả:
0/12
Thời gian làm bài: 00:00:00
Giới hạn $\lim \dfrac{{{2^{n + 1}} - {{3.5}^n} + 5}}{{{{3.2}^n} + {{9.5}^n}}}$bằng?
Cho \(\lim {u_n} = L\). Chọn mệnh đề đúng:
Cho ${u_n} = \dfrac{{{n^2} - 3n}}{{1 - 4{n^2}}}$. Khi đó $\lim {u_n}$bằng?
Cho các dãy số \({u_n} = \dfrac{1}{n},n \ge 1\) và \({v_n} = {n^2},n \ge 1\). Khi đó:
Cho ${u_n} = \dfrac{{{3^n} + {5^n}}}{{{5^n}}}$. Khi đó $\lim {u_n}$bằng?
Dãy số nào sau đây có giới hạn \(0\)?
Chọn mệnh đề sai:
Biết \(\lim {u_n} = 3\). Chọn mệnh đề đúng trong các mệnh đề sau.
Giới hạn $\lim \dfrac{{{{\left( {2 - 5n} \right)}^3}{{\left( {n + 1} \right)}^2}}}{{2 - 25{n^5}}}$bằng?
Cho dãy số $({u_n})$ xác định bởi $\left\{ \begin{align} & u_{1}=2 \\ & {u_{n+1}}=\dfrac{{{u}_{n}}+1}{2},(n\ge 1) \end{align} \right.$ Khi đó mệnh đề nào sau đây là đúng?
Cho dãy số $({u_n})$ với ${u_n} = \dfrac{1}{{1.3}} + \dfrac{1}{{3.5}} + ... + \dfrac{1}{{\left( {2n - 1} \right).\left( {2n + 1} \right)}}$
Khi đó $\lim {u_n}$ bằng?
Cho dãy số $({u_n})$ với ${u_n} = \dfrac{{\left( {2n + 1} \right)\left( {1 - 3n} \right)}}{{\sqrt[3]{{{n^3} + 5n - 1}}}}$. Khi đó $\lim {u_n}$ bằng?