0/50
Bắt đầu Thoát
00:00:00

Đề kiểm tra giữa học kì 2 - Đề số 3

Kết quả:

0/50

Thời gian làm bài: 00:00:00

Câu 1 Trắc nghiệm

Cho tứ diện đều $ABCD$ cạnh $a = 12,$ gọi $\left( P \right)$ là mặt phẳng qua $B$ và vuông góc với $AD.$ Thiết diện của $\left( P \right)$ và hình chóp có diện tích bằng

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 4 Trắc nghiệm

Cho hình chóp \(S.ABC\) có cạnh \(SA \bot \left( {ABC} \right)\) và đáy \(ABC\) là tam giác cân ở \(C\). Gọi \(H\) và \(K\) lần lượt là trung điểm của \(AB\) và \(SB\). Khẳng định nào sau đây sai?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 5 Trắc nghiệm

Trong không gian tập hợp các điểm \(M\) cách đều hai điểm cố định \(A\) và \(B\) là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 6 Trắc nghiệm

Cho hình lập phương $ABCD.{A_1}{B_1}{C_1}{D_1}$ . Khi đó tổng 3 góc $(\overrightarrow {{D_1}{A_1}} ,\overrightarrow {C{C_1}} ) + (\overrightarrow {{C_1}B} ,\overrightarrow {D{D_1}} ) + (\overrightarrow {D{C_1}} ,\overrightarrow {{A_1}B} )$ là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 7 Trắc nghiệm

Cho dãy số \(\left( {{u_n}} \right)\) có giới hạn \(L =  - \dfrac{1}{2}\). Chọn kết luận đúng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 8 Trắc nghiệm

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $B$, $SA$ vuông góc với đáy. Gọi $H,{\rm{ }}K$ lần lượt là hình chiếu của $A$ trên $SB$, $SC$ và $I$ là giao điểm của $HK$ với mặt phẳng $\left( {ABC} \right)$. Khẳng định nào sau đây sai?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 9 Trắc nghiệm

Trong không gian cho đường thẳng \(\Delta \) không nằm trong mp \(\left( P \right)\), đường thẳng \(\Delta \) được gọi là vuông góc với mp \(\left( P \right)\) nếu:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 10 Trắc nghiệm

Cho cấp số cộng \(\left( {{u_n}} \right)\) với \(\left\{ \begin{array}{l}{u_3} + {u_5} = 5\\{u_3}.{u_5} = 6\end{array} \right..\) Tìm số hạng đầu của cấp số cộng.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 11 Trắc nghiệm

Kết quả của giới hạn \(\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{\sqrt {x + 2} }}{{\sqrt {x - 2} }}\) là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 12 Trắc nghiệm

Cho hình lập phương\(ABCD.A'B'C'D'\). Gọi $\alpha $ là góc giữa $AC'$ và mp $\left( {A'BCD'} \right).$ Chọn khẳng định đúng trong các khẳng định sau?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 13 Trắc nghiệm

Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to 1} \,\,\dfrac{{\sqrt[3]{x} - 1}}{{\sqrt[3]{{4x + 4}} - 2}}\) là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 14 Trắc nghiệm

Trong không gian cho tam giác đều $SAB$ và hình vuông $ABCD$ cạnh $a$ nằm trên hai mặt phẳng vuông góc. Gọi $H,$ $K$ lần lượt là trung điểm của $AB$, $CD$. Gọi $\varphi $ là góc giữa hai mặt phẳng $\left( {SAB} \right)$ và $\left( {SCD} \right)$. Mệnh đề nào sau đây đúng? 

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 15 Trắc nghiệm

Cho các dãy số \({u_n} = \dfrac{1}{n},n \ge 1\) và \({v_n} = {n^2},n \ge 1\). Khi đó:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 16 Trắc nghiệm

Chọn đáp án đúng: Với \(c,k\) là các hằng số và \(k\) nguyên dương thì:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 17 Trắc nghiệm

Cho tứ diện \(ABCD\) có cạnh $AB$, $BC$, $CD$ bằng nhau và vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 18 Trắc nghiệm

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang vuông tại $A$ và $D$, đáy lớn $AB$; cạnh bên $SA$ vuông góc với đáy. Gọi $Q$ là điểm trên cạnh $SA$ và $Q \ne A,$ $Q \ne S$; $M$ là điểm trên đoạn $AD$ và $M \ne A$. Mặt phẳng $\left( \alpha  \right)$ qua $QM$ và vuông góc với mặt phẳng $\left( {SAD} \right)$. Thiết diện tạo bởi $\left( \alpha  \right)$ với hình chóp đã cho là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 19 Trắc nghiệm

Cho tứ diện $ABCD$ có $AB$ vuông góc với $CD$, $AB = 4{,^{}}CD = 6$. $M$ là điểm thuộc cạnh $BC$ sao cho $MC = \dfrac{1}{2}BM$. Mặt phẳng $\left( P \right)$ đi qua $M$ song song với $AB$ và $CD$. Diện tích thiết diện của $\left( P \right)$ với tứ diện là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 20 Trắc nghiệm

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thoi cạnh $a$, các cạnh $SA = SB = a,$ $SD = a\sqrt 2 $. Góc giữa hai mặt phẳng $\left( {SBD} \right)$ và $\left( {ABCD} \right)$ bằng ${90^0}.$ Độ dài đoạn thẳng $BD$

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 21 Trắc nghiệm

Cho hàm số \(f\left( x \right) =\) \( \left\{ \begin{array}{l}\dfrac{{\tan x}}{x}\,\,\,khi\,\,x \ne 0,x \ne \dfrac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right)\\0\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\). Hàm số \(y = f\left( x \right)\) liên tục trên các khoảng nào sau đây?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 23 Trắc nghiệm

Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to  - 1} \dfrac{{\sqrt {3{x^2} + 1}  - x}}{{x - 1}}\) là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 24 Trắc nghiệm

Cho tứ diện $OABC$$OA,OB,OC$ đôi một vuông góc với nhau. Gọi $H$ là hình chiếu của $O$ trên mặt phẳng $\left( {ABC} \right)$. Xét các mệnh đề sau :

I. Vì $OC \bot OA,OC \bot OB$ nên $OC \bot \left( {OAB} \right)$.

II. Do $AB \subset \left( {OAB} \right)$nên $AB \bot OC.{\rm{      }}\left( 1 \right)$

III. $OH \bot \left( {ABC} \right)$$AB \subset \left( {ABC} \right)$nên $AB \bot OH.{\rm{       }}\left( 2 \right)$

IV. Từ $\left( 1 \right)$$\left( 2 \right) \Rightarrow AB \bot \left( {OCH} \right)$

Số mệnh đề đúng trong các mệnh đề trên là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 25 Trắc nghiệm

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $B,$ cạnh bên $SA$ vuông góc với đáy. Gọi $H$ là chân đường cao kẻ từ $A$ của tam giác $SAB.$ Khẳng định nào dưới đây là sai ?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 26 Trắc nghiệm

Biết rằng \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\dfrac{{{x^2} - 1}}{{\sqrt x  - 1}}}&{{\rm{khi }}x \ne 1}\\a&{{\rm{khi }}x = 1}\end{array}} \right.\) liên tục trên đoạn \(\left[ {0;1} \right]\) (với \(a\) là tham số). Khẳng định nào dưới đây về giá trị \(a\) là đúng?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 27 Trắc nghiệm

Cho  cấp số nhân$\left( {{u_n}} \right)$, biết:${u_1} =  - 2,\,{u_2} = 8$ . Lựa chọn đáp án đúng.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 29 Trắc nghiệm

Giới hạn $\lim \dfrac{{\sqrt {{n^2} - 3n - 5}  - \sqrt {9{n^2} + 3} }}{{2n - 1}}$bằng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 30 Trắc nghiệm

Tính $\mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} + 6x + 5}}{{{x^3} + 2{x^2} - 1}}$ bằng?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 32 Trắc nghiệm

Cho ba số dương $a,b,c$ thỏa mãn điều kiện \(\dfrac{1}{{\sqrt b  + \sqrt c }},\dfrac{1}{{\sqrt c  + \sqrt a }},\dfrac{1}{{\sqrt a  + \sqrt b }}\) lập thành một cấp số cộng. Mệnh đề nào dưới đây là đúng ?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 33 Trắc nghiệm

Tính tổng \({S_n} = 1 + 11 + 111 + ... + 11...11\) (có $10$ chữ số $1$)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 34 Trắc nghiệm

Tính giới hạn của dãy số  \({u_n} = \dfrac{1}{{2\sqrt 1  + \sqrt 2 }} + \dfrac{1}{{3\sqrt 2  + 2\sqrt 3 }} + ... + \dfrac{1}{{(n + 1)\sqrt n  + n\sqrt {n + 1} }}\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 35 Trắc nghiệm

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật với $AB = a$, $AD = a\sqrt 3 $. Cạnh bên $SA = 2a$ và vuông góc với đáy. Mặt phẳng $\left( \alpha  \right)$ đi qua $A$ vuông góc với $SC$. Tính diện tích $S$ của thiết diện tạo bởi $\left( \alpha  \right)$ với hình chóp đã cho.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 36 Trắc nghiệm

Giá trị của \(C = \lim \dfrac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1}  + n}}\) bằng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 37 Trắc nghiệm

Tính $\mathop {\lim }\limits_{x \to  - \infty } x\sqrt {\dfrac{{3x + 2}}{{2{x^3} + {x^2} - 1}}} $ bằng?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 38 Trắc nghiệm

Tính $\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} + 1}  + x - 1} \right)$ bằng?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 39 Trắc nghiệm

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cân tại $C$. Gọi $H$ là trung điểm $AB$. Biết rằng $SH$ vuông góc với mặt phẳng $\left( {ABC} \right)$ và $AB = SH = a.$ Tính cosin của góc $\alpha $ tọa bởi hai mặt phẳng $\left( {SAB} \right)$ và $\left( {SAC} \right)$. 

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 40 Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { - 10;10} \right)\) để phương trình ${x^3} - 3{x^2} + \left( {2m - 2} \right)x + m - 3 = 0$ có ba nghiệm phân biệt ${x_1},{\rm{ }}{x_2},{\rm{ }}{x_3}$ thỏa mãn ${x_1} <  - 1 < {x_2} < {x_3}$?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 41 Trắc nghiệm

Cho $a$ và $b$ là các số thực khác $0.$ Tìm hệ thức liên hệ giữa $a$ và $b$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1}  - 1}}{x}\,\,\,khi\,\,x \ne 0\\4{x^2} + 5b\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) liên tục tại $x = 0.$

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b
Câu 42 Trắc nghiệm

Cho dãy số $({u_n})$xác định bởi
\(\left\{ \begin{array}{l}{u_1} = \dfrac{1}{2}\\{u_{n + 1}} = \dfrac{{\sqrt {u_n^2 + 4{u_n}} + {u_n}}}{2},\left( {n \ge 1} \right)\end{array} \right.\)
Đặt ${v_n} = \sum\limits_{i = 1}^n {\dfrac{1}{{u_{_i}^2}}}, $ khẳng định nào sau đây đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 43 Trắc nghiệm

Cho hình lập phương $ABCD.EFGH$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {EG} \)?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 44 Trắc nghiệm

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $B,$ cạnh bên $SA$ vuông góc với đáy. Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $SBC.$ $H$ là hình chiếu của $O$ trên $\left( {ABC} \right).$ Khẳng định nào dưới đây đúng ?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 45 Trắc nghiệm

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, mặt bên $SAB$ là tam giác đều và $SC = a\sqrt 2 $. Gọi $H,K$ lần lượt là trung điểm của các cạnh $AB$ và $AD$. Khẳng định nào sau đây là sai?.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 46 Trắc nghiệm

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ lên $\left( {ABC} \right)$ trùng với trung điểm $H$ của cạnh $BC$. Biết tam giác $SBC$ là tam giác đều. Tính số đo của góc giữa $SA$ và $\left( {ABC} \right).$

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 47 Trắc nghiệm

Cho hình chóp tam giác đều $S.ABC$ đỉnh $S,$ có độ dài cạnh đáy bằng $a$ và cạnh bên bằng \(\dfrac{{a\sqrt 3 }}{2}\). Gọi $M$ và $N$ lần lượt là trung điểm của các cạnh $SB$ và $SC.$ Tính theo $a$ diện tích tam giác $AMN,$ biết rằng mặt phẳng $\left( {AMN} \right)$ vuông góc với mặt phẳng $\left( {SBC} \right).$

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d
Câu 48 Trắc nghiệm

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB = AC = a$. Hình chiếu vuông góc $H$ của $S$ trên mặt đáy $\left( {ABC} \right)$ trùng với tâm đường tròn ngoại tiếp tam giác $ABC$ và $SH = \dfrac{{a\sqrt 6 }}{2}$. Gọi $\varphi $ là góc giữa hai đường thẳng $SB$ và $AC$. Mệnh đề nào sau đây đúng?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c
Câu 49 Trắc nghiệm

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A,\,\,\,AB = a.$ Tam giác $SAB$ đều và nằm trong mặt phẳng vuông góc với đáy. Đường thẳng $BC$ tạo với mặt phẳng $\left( {SAC} \right)$ góc ${30^0}.$ Tính diện tích tam giác $ABC.$

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a
Câu 50 Trắc nghiệm

Tính $\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt[n]{{(x + 1)(x + 2)...(x + n)}} - x} \right)$ bằng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b