Câu hỏi:
2 năm trước

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật với $AB = a$, $AD = a\sqrt 3 $. Cạnh bên $SA = 2a$ và vuông góc với đáy. Mặt phẳng $\left( \alpha  \right)$ đi qua $A$ vuông góc với $SC$. Tính diện tích $S$ của thiết diện tạo bởi $\left( \alpha  \right)$ với hình chóp đã cho.

Trả lời bởi giáo viên

Đáp án đúng: b
Lời giải - Đề kiểm tra giữa học kì 2 - Đề số 3 - ảnh 1

Trong tam giác $SAC, $ kẻ $AI \bot SC$ $\left( {\,I \in SC} \right)$

Trong $mp(SBC),$ kẻ ${d_1}$ đi qua $I$ vuông góc với $SC$ cắt $SB $ tại $M.$

Trong $mp(SCD),$ kẻ ${d_2}$ đi qua $I$ vuông góc với $SC$ cắt $SD$ tại $N.$

Khi đó thiết diện của hình chóp cắt bởi mp $\left( \alpha  \right)$ là tứ giác $AMIN.$

Ta có $SC \bot \left( \alpha  \right) \Rightarrow SC \bot AM$.   (1)

Lại có $\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AM$.   (2)

Từ (1) và (2), suy ra $AM \bot \left( {SBC} \right) \Rightarrow AM \bot MI$. Chứng minh tương tự, ta được $AN \bot NI$.

Do đó ${S_{AMIN}} = {S_{\Delta AMI}} + {S_{\Delta ANI}} $ $= \dfrac{1}{2}AM.MI + \dfrac{1}{2}AN.NI$.

Vì $AM, AI, AN $ là các đường cao của các tam giác vuông $SAB, SAC, SAD $ nên

$AM = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{2a}}{{\sqrt 5 }}$;   $AI = \dfrac{{SA.AC}}{{\sqrt {S{A^2} + A{C^2}} }} = a\sqrt 2 $;   $AN = \dfrac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \dfrac{{2a\sqrt {21} }}{7}$

Suy ra $MI = \sqrt {A{I^2} - A{M^2}}  = \dfrac{{a\sqrt {30} }}{5}$  và  $NI = \sqrt {A{I^2} - A{N^2}}  = \dfrac{{a\sqrt {14} }}{7}$

Vậy ${S_{AMIN}} = \dfrac{1}{2}\left( {\dfrac{{2a}}{{\sqrt 5 }}.\dfrac{{a\sqrt {30} }}{5} + \dfrac{{2a\sqrt {21} }}{7}.\dfrac{{a\sqrt {14} }}{7}} \right) = \dfrac{{12{a^2}\sqrt 6 }}{{35}}$

Hướng dẫn giải:

Sử dụng lý thuyết của đường thẳng vuông góc với mặt phẳng và bài toán tìm giao tuyến của hai mặt phẳng đồng thời việc tính toán trong tam giác, tứ giác cụ thể là tính diện tích đa giác

Câu hỏi khác