Kết quả:
0/25
Thời gian làm bài: 00:00:00
Khẳng định nào sau đây đúng về phép quay :
Cho điểm $N\left( { - 2;3} \right)$. Khẳng định nào sau đây đúng
Trong các mệnh đề sau đây mệnh đề nào sai?
Trong mặt phẳng $Oxy$ cho điểm \(M\left( { - 2;4} \right)\). Phép vị tự tâm $O$ tỉ số \(k = - 2\) biến điểm $M$ thành điểm nào trong các điểm sau?
Trong hệ trục tọa độ $Oxy$ cho điểm \(I\left( {a;b} \right)\). Nếu phép đối xứng tâm $I$ biến điểm \(M\left( {x;y} \right)\) thành điểm \(M'\left( {x';y'} \right)\) thì ta có biểu thức
Cho hai đường thẳng cắt nhau $d$ và $d'$. Có bao nhiêu phép tịnh tiến biến đường thẳng $d$ thành đường thẳng $d'$?
Điền cụm từ thích hợp vào chỗ chấm: “Phép đồng nhất là phép biến hình biến điểm \(M\) thành …”.
Trong mặt phẳng $Oxy$ cho parabol \(\left( P \right):y=4{x^2} - 7x + 3\). Phép đối xứng trục $Oy$ biến $\left( P \right)$ thành $\left( {P'} \right)$ có phương trình
Phép đồng nhất biến hình \(H\) thành hình \(H'\) thì:
Khẳng định nào sau đây sai ?
Cho đường thẳng $d$. Có bao nhiêu phép tịnh tiến biến đường thẳng $d$ thành chính nó?
Cho hai điểm \(M\left( { - 1;4} \right),M'\left( { - 4;5} \right)\). Phép vị tự tỉ số $k = 2$ biến $M$ thành $M'$ có tâm là điểm nào sau đây?
Cho hình vuông tâm $O$. Hỏi có bao nhiêu phép quay tâm $O$, góc quay \(\alpha \,\,\left( {0 < \alpha \le 360^0} \right)\) biến hình vuông đã cho thành chính nó.
Gọi $m$ là ảnh của đường thẳng $d$ qua phép quay tâm $I$ góc quay \(\alpha \) (biết rằng $I$ không nằm trên $d$), đường thẳng $d$ song song với $m$ khi:
Trong mặt phẳng $Oxy$, cho đường tròn $\left( C \right):\,\,{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 16$. Giả sử qua phép đối xứng tâm $I$ điểm \(A\left( {1;3} \right)\) biến thành điểm \(B\left( {a;b} \right)\). Tìm phương trình của đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\) qua phép đối xứng tâm $I$.
Có bao nhiêu phép đối xứng tâm biến một đường thẳng \(a\) cho trước thành chính nó?
Trong mặt phẳng với hệ tọa độ $Oxy$ , cho hai parabol: $\left( P \right):y = {x^2}$ và $\left( Q \right):y = {x^2} + 2x + 2$. Để chứng minh có một phép tịnh tiến $T$ biến $\left( Q \right)$ thành $\left( P \right)$ , một học sinh lập luận qua ba bước như sau:
- Bước 1: Gọi vectơ tịnh tiến là $\overrightarrow u = \left( {a;b} \right)$, áp dụng biểu thức tọa độ của phép tịnh tiến:
$\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = x' - a\\y = y' - b\end{array} \right.$
- Bước 2: Thế vào phương trình của $\left( Q \right)$ ta được:
$y' - b = {\left( {x' - a} \right)^2} + 2\left( {x' - a} \right) + 2 \Leftrightarrow y' = x{'^2} + 2\left( {1 - a} \right)x' + {a^2} - 2a + b + 2$
Suy ra ảnh của $\left( Q \right)$ qua phép tịnh tiến $T$ là parabol $\left( R \right):y = {x^2} + 2\left( {1 - a} \right)x + {a^2} - 2a + b + 2$
- Bước 3: Buộc $\left( R \right)$ trùng với $\left( P \right)$ ta được hệ: $\left\{ \begin{array}{l}2\left( {1 - a} \right) = 0\\{a^2} - 2a + b + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 1\end{array} \right.$
Vậy có duy nhất một phép tịnh tiến biến $\left( Q \right)$ thành $\left( P \right)$ , đó là phép tịnh tiến theo vectơ $\overrightarrow u = \left( {1; - 1} \right)$
Hỏi lập luận trên đúng hay sai? Nếu sai thì sai bắt đầu từ bước nào?
Trong mặt phẳng với hệ tọa độ $Oxy$, cho parabol $\left( P \right)$ có phương trình \(y = {x^2} - 2x\) và điểm \(I\left( { - 3;1} \right)\). Phép đối xứng tâm \({D_I}\) biến parabol $\left( P \right)$ thành parabol $\left( {P'} \right)$ có phương trình là
Cho lục giác đều $ABCDEF$, tâm $O$, các đỉnh được đặt theo thứ tự đó và cùng chiều kim đồng hồ. Thực hiện lần lượt phép quay tâm $O$ góc quay \({60^0}\) và phép tịnh tiến theo vector \(\overrightarrow {OC} \) thì ảnh của tam giác $ABO$ là:
Trong mặt phẳng tọa độ $Oxy$. Cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt có phương trình \(x - 2y + 1 = 0\) và \(x - 2y + 4 = 0\), điểm \(I\left( {2;1} \right)\). Phép vị tự tâm $I$ tỉ số $k$ biến đường thẳng \({\Delta _1}\) thành \({\Delta _2}\) khi đó giá trị của $k$ là :
Cho \(\Delta ABC\) có đường cao \(AH,H\) nằm giữa \(BC.\) Biết \(AH = 4,HB = 2,HC = 8.\) Phép đồng dạng \(F\) biến \(\Delta HBA\) thành \(\Delta HAC\). \(F\) được hình thành bởi hai phép biến hình nào?
Ảnh của điểm \(M\left( {2; - 3} \right)\) qua phép quay tâm \(I\left( { - 1;2} \right)\) góc quay \(120^\circ \) là
Trong mặt phẳng \(Oxy\), tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\): \({x^2} + {y^2} = 1\) qua phép đối xứng tâm \(I\left( {1;\;0} \right)\).
Cho đường tròn \(\left( {O;R} \right)\) và một điểm $A$ cố định. Một điểm $M$ thay đổi trên \(\left( {O;R} \right)\), gọi $N$ là trung điểm của đoạn thẳng $AM$ . Khi $M$ thay đổi trên \(\left( {O;R} \right)\), tập hợp các điểm $N$ là:
Trong mặt phẳng tọa độ $Oxy$, cho đường thẳng \(d:\)\(3x - y + 2 = 0\). Viết phương trình đường thẳng \(d'\) là ảnh của $d$ qua phép quay tâm $O$ góc quay \( - {90^{\rm{o}}}\).