Kết quả:
0/25
Thời gian làm bài: 00:00:00
Cho hình chóp $S.ABC$ có đáy \(ABC\). là tam giác vuông tại $B,$ $BC = a$. Cạnh bên $SA = a$ vuông góc với mặt phẳng đáy. Góc giữa hai mặt phẳng $\left( {SBC} \right)$ và $\left( {ABC} \right)$ bằng ${45^0}$. Độ dài $AC$ bằng
Cho hình lăng trụ tam giác $ABC.A'B'C'$ có các cạnh bên hợp với đáy những góc bằng $60^\circ $, đáy $ABC$ là tam giác đều cạnh $a$ và $A'$ cách đều $A$, $B$, $C$. Tính khoảng cách giữa hai đáy của hình lăng trụ.
Trong không gian cho ba đường thẳng phân biệt \(a,b,c\). Khẳng định nào sau đây đúng?
Trong các mệnh đề sau, mệnh đề nào đúng?
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Khoảng cách từ đỉnh \(A\) của hình lập phương đó đến đường thẳng \(CD'\) bằng
Cho \(\left| {\overrightarrow a } \right| = 3,\left| {\overrightarrow b } \right| = 5\), góc giữa \(\overrightarrow a \) và \(\overrightarrow b \) bằng $120^\circ $. Chọn khẳng định sai trong các khẳng định sau?
Cho tứ diện $ABCD$ có \(AB = AC\) và \(DB = DC\). Khẳng định nào sau đây đúng?
Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(M\) là trung điểm của \(AA'\), \(O\) là tâm của hình bình hành \(ABCD\). Cặp ba vecto nào sau đây đồng phẳng?
Cho tứ diện $SABC$ có hai tam giác $\Delta ABC$ và $\Delta SBC$ là hai tam giác đều cạnh $a,\,\,\,SA = \dfrac{{a\sqrt 3 }}{2}.$ Gọi $M$ là điểm trên $AB$ sao cho $AM = b{\rm{ }}\left( {0 < b < a} \right).$ $\left( P \right)$ là mặt phẳng qua $M$ và vuông góc với $BC.$ Thiết diện của $\left( P \right)$ và tứ diện $SABC$ có diện tích bằng ?
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang vuông tại $A$ và $D$, đáy lớn $AB$; cạnh bên $SA$ vuông góc với đáy. Gọi $Q$ là điểm trên cạnh $SA$ và $Q \ne A,$ $Q \ne S$; $M$ là điểm trên đoạn $AD$ và $M \ne A$. Mặt phẳng $\left( \alpha \right)$ qua $QM$ và vuông góc với mặt phẳng $\left( {SAD} \right)$. Thiết diện tạo bởi $\left( \alpha \right)$ với hình chóp đã cho là:
Trong các mệnh đề sau, mệnh đề nào sai?
Cho hình lăng trụ tam giác \(ABC.A'B'C'\) có cạnh bên bằng $a.$ Các cạnh bên của lăng trụ tạo với mặt đáy góc ${60^{\rm{o}}}.$ Hình chiếu vuông góc của $A'$ lên mặt phẳng $\left( {ABC} \right)$ là trung điểm của $BC$. Khoảng cách giữa hai mặt đáy của lăng trụ bằng bao nhiêu?
Cho hình chóp $S.ABCD$ có đáy \(ABCD\) là hình vuông cạnh bằng $a$. Cạnh bên $SA$ vuông góc với đáy, $SB$ hợp với mặt đáy một góc $60^\circ $. Tính khoảng cách \(d\) từ điểm $D$ đến mặt phẳng $\left( {SBC} \right)$.
Cho hình tứ diện \(ABCD\) có $AB$, $BC$, $CD$ đôi một vuông góc nhau. Hãy chỉ ra điểm \(O\) cách đều bốn điểm \(A\), \(B\), \(C\), \(D\).
Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\) và đáy \(ABCD\) là hình chữ nhật. Gọi \(O\) là tâm của \(ABCD\) và \(I\) là trung điểm của \(SC\). Khẳng định nào sau đây sai ?
Cho tứ diện $ABCD$ có trọng tâm $G$. Chọn khẳng định đúng?
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\) và \(SA = SB = SC = b\). Gọi G là trọng tâm \(\Delta ABC\). Xét mặt phẳng \((P)\) đi qua \(A\) và vuông góc với \(SC\). Tìm hệ thức liên hệ giữa \(a\) và \(b\) để \((P)\) cắt \(SC\) tại điểm \({C_1}\) nằm giữa \(S\) và \(C\).
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, $SA = a$ và vuông góc với đáy. Mặt phẳng $\left( \alpha \right)$ qua trung điểm $E$ của $SC$ và vuông góc với $AB$. Tính diện tích $S$ của thiết diện tạo bởi $\left( \alpha \right)$ với hình chóp đã cho.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật tâm $O$ với $AB = a,$ $AD = 2a.$ Cạnh bên $SA = a$ và vuông góc với đáy. Gọi $\left( \alpha \right)$ là mặt phẳng qua $SO$ và vuông góc với $\left( {SAD} \right).$ Tính diện tích $S$ của thiết diện tạo bởi $\left( \alpha \right)$ và hình chóp đã cho.
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB = AC = a$. Hình chiếu vuông góc $H$ của $S$ trên mặt đáy $\left( {ABC} \right)$ trùng với tâm đường tròn ngoại tiếp tam giác $ABC$ và $SH = \dfrac{{a\sqrt 6 }}{2}$. Gọi $\varphi $ là góc giữa hai đường thẳng $SB$ và $AC$. Mệnh đề nào sau đây đúng?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = a,{\rm{ }}AD = 2a\). Cạnh bên \(SA\) vuông góc với đáy, góc giữa \(SD\) với đáy bằng \({60^0}.\) Tính khoảng cách \(d\) từ điểm \(C\) đến mặt phẳng \(\left( {SBD} \right)\) theo \(a\).
Cho hình chóp $S.ABCD $ có đáy $ABCD$ là hình vuông cạnh $2a.$ Hình chiếu vuông góc của $S$ trên mặt phẳng $(ABCD)$ là điểm $H$ thuộc đoạn $BD$ sao cho $HD = 3HB.$ Biết góc giữa mặt phẳng $(SCD)$ và mặt đáy bằng ${45^0}.$ Khoảng cách giữa hai đường thẳng $SA$ và $BD$ là
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a.$ Cạnh bên $SA = x$ và vuông góc với mặt phẳng $\left( {ABCD} \right).$ Xác định $x$ để hai mặt phẳng $\left( {SBC} \right)$ và $\left( {SCD} \right)$ tạo với nhau một góc ${60^0}.$
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật với $AB = a$, $AD = a\sqrt 3 $. Cạnh bên $SA = 2a$ và vuông góc với đáy. Mặt phẳng $\left( \alpha \right)$ đi qua $A$ vuông góc với $SC$. Tính diện tích $S$ của thiết diện tạo bởi $\left( \alpha \right)$ với hình chóp đã cho.
Cho hình chóp $S.ABCD$, có đáy $ABCD$ là hình chữ nhật. Cạnh bên $SA$ vuông góc với đáy, $SA = AB = a$ và $AD = x.a$. Gọi $E$ là trung điểm của $SC$. Tìm $x$, biết khoảng cách từ điểm $E$ đến mặt phẳng $\left( {SBD} \right)$ bằng $h = \dfrac{a}{3}$.