Kết quả:
0/12
Thời gian làm bài: 00:00:00
Cho tứ diện \(OABC\) có \(OA,{\rm{ }}OB,{\rm{ }}OC\) đôi một vuông góc với nhau. Gọi \(H\) là hình chiếu của \(O\) trên mặt phẳng \(\left( {ABC} \right)\). Mệnh đề nào sau đây là sai?
Cho hình hộp $ABCD.{A_1}{B_1}{C_1}{D_1}$ với $M = C{D_1} \cap {C_1}D$. Khi đó:
Cho $ABCD.{A_1}{B_1}{C_1}{D_1}$là hình hộp, với K là trung điểm CC1. Tìm khẳng định đúng trong các khẳng định sau:
Cho tứ diện \(ABCD\), \(M\) và \(N\) theo thứ tự là trung điểm của \(AB\) và \(CD\). Bộ ba vecto nào dưới đây đồng phẳng?
Mệnh đề nào sau đây là đúng?
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác cân ở \(C\). Gọi \(H\) và \(K\) lần lượt là trung điểm của \(AB\) và \(SB\). Biết \(HK \bot \left( {ABC} \right)\), khẳng định nào sau đây sai?
Cho tứ diện $ABCD$ đều cạnh bằng $a$. Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $BCD$. Góc giữa $AO$ và $CD$ bằng bao nhiêu?
Cho hình chóp đều, chọn mệnh đề sai trong các mệnh đề sau:
Cho hình chóp $S.ABCD$ có tất cả các cạnh đều bằng $\;a$. Gọi $I$ và $J$ lần lượt là trung điểm của $SC$ và $BC$. Số đo của góc $\left( {IJ,\;CD} \right)$ bằng:
Cho tứ diện \(ABCD\) có \(AB = CD = a,IJ = \dfrac{{a\sqrt 3 }}{2}\) (\(I\), \(J\) lần lượt là trung điểm của \(BC\) và \(AD\)). Số đo góc giữa hai đường thẳng \(AB\) và \(CD\) là
Cho hình chóp $S.ABC$ có \(SA \bot (ABC)\) và tam giác $ABC$ không vuông, gọi $H,{\rm{ }}K$ lần lượt là trực tâm các tam giác$ABC$ và $SBC$. Các đường thẳng $AH,{\rm{ }}SK,{\rm{ }}BC$ thỏa mãn:
Cho tứ diện \(ABCD\) có \(AB \bot CD\) và \(AC \bot BD\). Gọi \(H\) là hình chiếu vuông góc của \(A\) lên \(mp(BCD)\). Các khẳng định sau, khẳng định nào sai?