Câu hỏi:
2 năm trước

Cho hình chóp $S.ABCD.$ Gọi $M, N $ lần lượt là trọng tâm của tam giác $SAB$ và $ABC.$ Khi đó $MN$ song song với

Trả lời bởi giáo viên

Đáp án đúng: c
Lời giải - Đề kiểm tra học kì 1 - Đề số 4 - ảnh 1

Gọi $E$ là trung điểm của $AB$ ta có:

\(\begin{array}{l}M \in SE\,;\,\dfrac{{EM}}{{ES}} = \dfrac{1}{3}\\N \in EC\,;\,\dfrac{{EN}}{{EC}} = \dfrac{1}{3}\end{array}\)

Xét tam giác $ESC$ ta có \(\dfrac{{EM}}{{ES}} = \dfrac{{EN}}{{EC}} = \dfrac{1}{3} \)

\(\Rightarrow \) $MN // SC$ (Định lí Ta – let đảo).

Mà \(SC \subset \left( {SCD} \right) \Rightarrow MN // (SCD)\)

Hướng dẫn giải:

- Đưa về cùng một mặt phẳng.

- Sử dụng tính chất trọng tâm của tam giác.

- Áp dụng định lí Ta – let đảo để chứng minh hai đường thẳng song song.

Câu hỏi khác