Số vị trí biểu diễn nghiệm của phương trình \(\sin x + \left( {\sqrt 3 - 2} \right)\cos x = 1\) trên đường tròn lượng giác là:
Trả lời bởi giáo viên
Bước 1:
Với \(a = 1;b = \sqrt 3 - 2;c = 1\) ta có:
\(\begin{array}{l}\sin x + \left( {\sqrt 3 - 2} \right)\cos x = 1\\ \Leftrightarrow \dfrac{1}{{\sqrt {8 - 4\sqrt 3 } }}\sin x + \dfrac{{\sqrt 3 - 2}}{{\sqrt {8 - 4\sqrt 3 } }}\cos x \\= \dfrac{1}{{\sqrt {8 - 4\sqrt 3 } }}\end{array}\)
Đặt \(\dfrac{1}{{\sqrt {8 - 4\sqrt 3 } }} = \cos \alpha \Rightarrow \dfrac{{\sqrt 3 - 2}}{{\sqrt {8 - 4\sqrt 3 } }} = \sin \alpha \). Khi đó phương trình tương đương:
$\sin x\cos \alpha + \cos x\sin \alpha = \cos \alpha$
Bước 2:
\(\begin{array}{l} \Leftrightarrow \sin \left( {x + \alpha } \right) = \sin \left( {\dfrac{\pi }{2} - \alpha } \right)\\ \Leftrightarrow \left[ \begin{array}{l}x + \alpha = \dfrac{\pi }{2} - \alpha + k2\pi \\x + \alpha = \dfrac{\pi }{2} + \alpha + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} - 2\alpha + k2\pi \\x = \dfrac{\pi }{2} + k2\pi \end{array} \right.\end{array}\)
Vì \(\alpha \ne 0 \Rightarrow \) có 2 vị trí biểu diễn nghiệm của phương trình.
Hướng dẫn giải:
Bước 1: Sử dụng phương pháp giải phương trình bậc nhất đối với \(\sin x\) và \(\cos x\):\(a.\sin x + b.\cos x = c\).
+) Chia cả 2 vế cho \(\sqrt {{a^2} + {b^2}} \)
+) Đặt \(\dfrac{a}{{\sqrt {{a^2} + {b^2}} }} = \cos \alpha \); \(\dfrac{b}{{\sqrt {{a^2} + {b^2}} }} = \sin \alpha \)
Bước 2: Giải phương trình lượng giác cơ bản
+) Sử dụng công thức
\(\sin x.\cos \alpha + \cos x.\sin \alpha = \sin \left( {x + \alpha } \right)\)
\(\cos \alpha = \sin \left( {\dfrac{\pi }{2} - \alpha } \right)\)
\(\sin x = \sin y \Leftrightarrow \left[ \begin{array}{l}x = y + k2\pi \\x = \pi - y + k2\pi \end{array} \right.\)