Cho \(a, b\) là các số thực khác \(0\). Tìm hệ thức liên hệ giữa \(a\) và \(b\) để hàm số sau liên tục tại \(x = 0\): \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1} \sqrt[3]{{bx + 1}} - 1}}{x}\,\,\,\,\,khi\,x \ne 0\\a + b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\)
Trả lời bởi giáo viên
Ta có:
$\begin{array}{l}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {ax + 1} \sqrt[3]{{bx + 1}} - 1}}{x} \\= \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {ax + 1} - 1} \right)\left( {\sqrt[3]{{bx + 1}} - 1} \right) + \left( {\sqrt {ax + 1} - 1} \right) + \left( {\sqrt[3]{{bx + 1}} - 1} \right)}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{ax + 1 - 1}}{{\sqrt {ax + 1} + 1}}.\dfrac{{bx + 1 - 1}}{{{{\sqrt[3]{{bx + 1}}}^2} + \sqrt[3]{{bx + 1}} + 1}} + \dfrac{{ax + 1 - 1}}{{\sqrt {ax + 1} + 1}} + \dfrac{{bx + 1 - 1}}{{{{\sqrt[3]{{bx + 1}}}^2} + \sqrt[3]{{bx + 1}} + 1}}}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{abx}}{{\left( {\sqrt {ax + 1} + 1} \right)\left( {{{\sqrt[3]{{bx + 1}}}^2} + \sqrt[3]{{bx + 1}} + 1} \right)}} + \dfrac{a}{{\sqrt {ax + 1} + 1}} + \dfrac{b}{{{{\sqrt[3]{{bx + 1}}}^2} + \sqrt[3]{{bx + 1}} + 1}}} \right]\\ = 0 + \dfrac{a}{2} + \dfrac{b}{3} = \dfrac{a}{2} + \dfrac{b}{3}\end{array}$
Để hàm số liên tục tại \(x = 0 \) thì \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow \dfrac{a}{2} + \dfrac{b}{3} = a + b \Leftrightarrow \dfrac{a}{2} + \dfrac{{2b}}{3} = 0 \Leftrightarrow 3a + 4b = 0\)
Hướng dẫn giải:
Xét tính liên tục của hàm số tại \(x = 0\).
Để hàm số liên tục tại \(x = 0\) thì \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right).\)