Cho hàm số \(y = {\left( {\dfrac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right)^2}\). Đạo hàm của hàm số \(f\left( x \right)\) là:
Trả lời bởi giáo viên
Ta có : \(y' = 2\left( {\dfrac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right){\left( {\dfrac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right)^\prime }\)
\(\begin{array}{l}
= 2\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right)\left( {\frac{{ - 1 - \sqrt x + 2}}{{1 + \sqrt x }}} \right)'\\
= 2\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right)\left( { - 1 + \frac{2}{{1 + \sqrt x }}} \right)'\\
= 2\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right).\frac{{ - 2\left( {1 + \sqrt x } \right)'}}{{{{\left( {1 + \sqrt x } \right)}^2}}}\\
= 2\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right).\frac{{ - 2.\frac{1}{{2\sqrt x }}}}{{{{\left( {1 + \sqrt x } \right)}^2}}}\\
= - 2\left( {\frac{{1 - \sqrt x }}{{1 + \sqrt x }}} \right).\frac{1}{{\sqrt x {{\left( {1 + \sqrt x } \right)}^2}}}\\
= - \frac{{ - 2\left( {1 - \sqrt x } \right)}}{{\sqrt x {{\left( {1 + \sqrt x } \right)}^3}}}
\end{array}\)
Hướng dẫn giải:
Sử dụng công thức tính đạo hàm $\left( {{u^n}} \right)' = n{u^{n - 1}}u'$